Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37073791

RESUMO

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Clostridium perfringens/metabolismo , Fatores de Virulência , Inflamação , Interleucina-1beta/metabolismo , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
2.
Sci Immunol ; 7(71): eabm1803, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594341

RESUMO

Clostridium species are a group of Gram-positive bacteria that cause diseases in humans, such as food poisoning, botulism, and tetanus. Here, we analyzed 10 different Clostridium species and identified that Clostridium septicum, a pathogen that causes sepsis and gas gangrene, activates the mammalian cytosolic inflammasome complex in mice and humans. Mechanistically, we demonstrate that α-toxin secreted by C. septicum binds to glycosylphosphatidylinositol (GPI)-anchored proteins on the host plasma membrane, oligomerizing and forming a membrane pore that is permissive to efflux of magnesium and potassium ions. Efflux of these cytosolic ions triggers the activation of the innate immune sensor NLRP3, inducing activation of caspase-1 and gasdermin D, secretion of the proinflammatory cytokines interleukin-1ß and interleukin-18, pyroptosis, and plasma membrane rupture via ninjurin-1. Furthermore, α-toxin of C. septicum induces rapid inflammasome-mediated lethality in mice and pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents C. septicum-induced lethality. Overall, our results reveal that cytosolic innate sensing of α-toxin is central to the recognition of C. septicum infection and that therapeutic blockade of the inflammasome pathway may prevent sepsis and death caused by toxin-producing pathogens.


Assuntos
Toxinas Bacterianas , Proteínas Ligadas por GPI , Inflamassomos , Animais , Toxinas Bacterianas/metabolismo , Clostridium septicum/química , Proteínas Ligadas por GPI/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Inflamassomos/metabolismo , Mamíferos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse
3.
Elife ; 102021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34579805

RESUMO

Many software solutions are available for proteomics and glycomics studies, but none are ideal for the structural analysis of peptidoglycan (PG), the essential and major component of bacterial cell envelopes. It icomprises glycan chains and peptide stems, both containing unusual amino acids and sugars. This has forced the field to rely on manual analysis approaches, which are time-consuming, labour-intensive, and prone to error. The lack of automated tools has hampered the ability to perform high-throughput analyses and prevented the adoption of a standard methodology. Here, we describe a novel tool called PGFinder for the analysis of PG structure and demonstrate that it represents a powerful tool to quantify PG fragments and discover novel structural features. Our analysis workflow, which relies on open-access tools, is a breakthrough towards a consistent and reproducible analysis of bacterial PGs. It represents a significant advance towards peptidoglycomics as a full-fledged discipline.


Assuntos
Bactérias/química , Peptidoglicano/química , Configuração de Carboidratos , Conjuntos de Dados como Assunto , Glicômica , Espectrometria de Massas/métodos , Peptidoglicano/biossíntese , Reprodutibilidade dos Testes , Software
4.
Gastroenterology ; 159(4): 1431-1443.e6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574621

RESUMO

BACKGROUND & AIMS: The protease plasmin is an important wound healing factor, but it is not clear how it affects gastrointestinal infection-mediated damage, such as that resulting from Clostridioides difficile. We investigated the role of plasmin in C difficile-associated disease. This bacterium produces a spore form that is required for infection, so we also investigated the effects of plasmin on spores. METHODS: C57BL/6J mice expressing the precursor to plasmin, the zymogen human plasminogen (hPLG), or infused with hPLG were infected with C difficile, and disease progression was monitored. Gut tissues were collected, and cytokine production and tissue damage were analyzed by using proteomic and cytokine arrays. Antibodies that inhibit either hPLG activation or plasmin activity were developed and structurally characterized, and their effects were tested in mice. Spores were isolated from infected patients or mice and visualized using super-resolution microscopy; the functional consequences of hPLG binding to spores were determined. RESULTS: hPLG localized to the toxin-damaged gut, resulting in immune dysregulation with an increased abundance of cytokines (such as interleukin [IL] 1A, IL1B, IL3, IL10, IL12B, MCP1, MP1A, MP1B, GCSF, GMCSF, KC, TIMP-1), tissue degradation, and reduced survival. Administration of antibodies that inhibit plasminogen activation reduced disease severity in mice. C difficile spores bound specifically to hPLG and active plasmin degraded their surface, facilitating rapid germination. CONCLUSIONS: We found that hPLG is recruited to the damaged gut, exacerbating C difficile disease in mice. hPLG binds to C difficile spores, and, upon activation to plasmin, remodels the spore surface, facilitating rapid spore germination. Inhibitors of plasminogen activation might be developed for treatment of C difficile or other infection-mediated gastrointestinal diseases.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Enterocolite Pseudomembranosa/etiologia , Enterocolite Pseudomembranosa/patologia , Plasminogênio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Intestino Delgado , Camundongos , Camundongos Endogâmicos C57BL
5.
Nat Microbiol ; 4(12): 2237-2245, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406331

RESUMO

Spore-forming bacteria encompass a diverse range of genera and species, including important human and animal pathogens, and food contaminants. Clostridioides difficile is one such bacterium and is a global health threat because it is the leading cause of antibiotic-associated diarrhoea in hospitals. A crucial mediator of C. difficile disease initiation, dissemination and re-infection is the formation of spores that are resistant to current therapeutics, which do not target sporulation. Here, we show that cephamycin antibiotics inhibit C. difficile sporulation by targeting spore-specific penicillin-binding proteins. Using a mouse disease model, we show that combined treatment with the current standard-of-care antibiotic, vancomycin, and a cephamycin prevents disease recurrence. Cephamycins were found to have broad applicability as an anti-sporulation strategy, as they inhibited sporulation in other spore-forming pathogens, including the food contaminant Bacillus cereus. This study could directly and immediately affect treatment of C. difficile infection and advance drug development to control other important spore-forming bacteria that are problematic in the food industry (B. cereus), are potential bioterrorism agents (Bacillus anthracis) and cause other animal and human infections.


Assuntos
Antibacterianos/farmacologia , Cefamicinas/farmacologia , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/prevenção & controle , Animais , Toxinas Bacterianas/genética , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação às Penicilinas/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/genética , Esporos Bacterianos/efeitos dos fármacos , Vancomicina/farmacologia , Células Vero/efeitos dos fármacos
6.
J Neurotrauma ; 36(23): 3297-3308, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31140372

RESUMO

The antifibrinolytic agent, tranexamic acid (TXA), an inhibitor of plasmin formation, currently is evaluated to reduce bleeding in various conditions, including traumatic brain injury (TBI). Because plasmin is implicated in inflammation and immunity, we investigated the effects of plasmin inhibition on the immune response after TBI in the presence or absence of induced pneumonia. Wild-type mice treated with vehicle or TXA or mice deficient in plasminogen (plg-/-) underwent TBI using the controlled cortical impact model. Mice were then subjected to Staphylococcus aureus induced pneumonia and the degree of immune competence determined. Significant baseline changes in the innate immune cell profile were seen in plg-/- mice with increases in spleen weight and white blood cell counts, and elevation in plasma interleukin-6 levels. The plg-/- mice subjected to TBI displayed no additional changes in these parameters at the 72 h or one week time point post-TBI. The plg-/- mice subjected to TBI did not exhibit any further increase in susceptibility to endogenous infection. Pneumonia was induced by intratracheal instillation of S. aureus. The TBI did not worsen pneumonia symptoms or delay recovery in plg-/- mice. Similarly, in wild type mice, treatment with TXA did not impact on the ability of mice to counteract pneumonia after TBI. Administration of TXA after TBI and subsequent pneumonia, however, altered the number and surface marker expression of several myeloid and lymphoid cell populations, consistent with enhanced immune activation at the 72 h time point. This investigation confirms the immune-modulatory properties of TXA, thereby highlighting its effects unrelated to inhibition of fibrinolysis.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Imunidade Celular/imunologia , Depuração Mucociliar/imunologia , Pneumonia Bacteriana/imunologia , Infecções Estafilocócicas/imunologia , Ácido Tranexâmico/uso terapêutico , Animais , Antifibrinolíticos/farmacologia , Antifibrinolíticos/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Imunidade Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Depuração Mucociliar/efeitos dos fármacos , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus , Ácido Tranexâmico/farmacologia
7.
Plasmid ; 102: 37-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30790588

RESUMO

Conjugative transfer is a major contributor to the dissemination of antibiotic resistance and virulence genes in the human and animal pathogen, Clostridium perfringens. The C. perfringens plasmid pCW3 is the archetype of an extensive family of highly related conjugative toxin and antibiotic resistance plasmids found in this bacterium. These plasmids were thought to constitute the only conjugative plasmid family in C. perfringens. Recently, another series of C. perfringens plasmids, the pCP13-like family, have been shown to harbour important toxin genes, including genes that encode the novel binary clostridial enterotoxin, BEC. Based on early bioinformatics analysis this plasmid family was thought to be non-conjugative. Here we demonstrate that pCP13 is in fact conjugative, transfers at high frequency and that the newly defined Pcp conjugation locus encodes putative homologues of a type 4 secretion system (T4SS), one of which, PcpB4, was shown to be essential for transfer. The T4SS of pCP13 also appears to be evolutionarily related to conjugative toxin plasmids from other clostridia-like species, including Paeniclostridium (formerly Clostridium) sordellii, Clostridioides (formerly Clostridium) difficile and Clostridium botulinum. Therefore, it is clear that there are two distinct families of conjugative plasmids in C. perfringens: the pCW3 family and the pCP13 family. This study has significant implications for our understanding of the movement of toxin genes both within C. perfringens, but also potentially to other pathogenic clostridia.


Assuntos
Toxinas Bacterianas/genética , Clostridium perfringens/genética , Conjugação Genética , Plasmídeos/genética , Sequência de Bases , Sequência Conservada/genética , Loci Gênicos , Modelos Genéticos , Mutação/genética , Filogenia
8.
Infect Immun ; 87(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530621

RESUMO

Clostridium difficile is a major cause of hospital-acquired antibiotic-associated diarrhea. C. difficile produces two cytotoxins, TcdA and TcdB; both toxins are multidomain proteins that lead to cytotoxicity through the modification and inactivation of small GTPases of the Rho/Rac family. Previous studies have indicated that host glycans are targets for TcdA and TcdB, with interactions thought to be with both α- and ß-linked galactose. In the current study, screening of glycan arrays with different domains of TcdA and TcdB revealed that the binding regions of both toxins interact with a wider range of host glycoconjugates than just terminal α- and ß-linked galactose, including blood groups, Lewis antigens, N-acetylglucosamine, mannose, and glycosaminoglycans. The interactions of TcdA and TcdB with ABO blood group and Lewis antigens were assessed by surface plasmon resonance (SPR). The blood group A antigen was the highest-affinity ligand for both toxins. Free glycans alone or in combination were unable to abolish Vero cell cytotoxicity by TcdB. SPR competition assays indicate that there is more than one glycan binding site on TcdB. Host glycoconjugates are common targets of bacterial toxins, but typically this binding is to a specific structure or related structures. The binding of TcdA and TcdB is to a wide range of host glycans providing a wide range of target cells and tissues in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Lectinas/metabolismo , Animais , Sobrevivência Celular , Chlorocebus aethiops , Clonagem Molecular , Polissacarídeos , Células Vero
9.
PLoS One ; 11(9): e0162981, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27637108

RESUMO

The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringens heme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.


Assuntos
Clostridium perfringens/metabolismo , Heme/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transcrição Gênica
10.
Toxins (Basel) ; 8(6)2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27322322

RESUMO

The clostridia produce an arsenal of toxins to facilitate their survival within the host environment. TcsL is one of two major toxins produced by Clostridium sordellii, a human and animal pathogen, and is essential for disease pathogenesis of this bacterium. C. sordellii produces many other toxins, but the role that they play in disease is not known, although previous work has suggested that the sialidase enzyme NanS may be involved in the characteristic leukemoid reaction that occurs during severe disease. In this study we investigated the role of NanS in C. sordellii disease pathogenesis. We constructed a nanS mutant and showed that NanS is the only sialidase produced from C. sordellii strain ATCC9714 since sialidase activity could not be detected from the nanS mutant. Complementation with the wild-type gene restored sialidase production to the nanS mutant strain. Cytotoxicity assays using sialidase-enriched culture supernatants applied to gut (Caco2), vaginal (VK2), and cervical cell lines (End1/E6E7 and Ect1/E6E7) showed that NanS was not cytotoxic to these cells. However, the cytotoxic capacity of a toxin-enriched supernatant to the vaginal and cervical cell lines was substantially enhanced in the presence of NanS. TcsL was not the mediator of the observed cytotoxicity since supernatants harvested from a TcsL-deficient strain displayed similar cytotoxicity levels to TcsL-containing supernatants. This study suggests that NanS works synergistically with an unknown toxin or toxins to exacerbate C. sordellii-mediated tissue damage in the host.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/genética , Clostridium sordellii/enzimologia , Neuraminidase/toxicidade , Proteínas de Bactérias/genética , Toxinas Bacterianas/toxicidade , Células CACO-2 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Clostridium sordellii/genética , Humanos , Mutação , Neuraminidase/genética
11.
Anaerobe ; 41: 10-17, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27178230

RESUMO

Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections.


Assuntos
Proteínas de Bactérias/genética , Clostridium perfringens/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/biossíntese , Clostridium perfringens/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Transcrição Gênica
12.
Genes (Basel) ; 6(4): 1347-60, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26703737

RESUMO

Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.

13.
Toxins (Basel) ; 7(2): 516-34, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25675415

RESUMO

Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host's innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and release of reactive oxygen species. Nonetheless, the signalling events that occur prior to the initiation of oncosis are poorly characterised. Our aims were to characterise the ability of α-toxin to activate the host mitogen activated protein kinase (MAPK) signalling pathway both in vitro and in vivo. Treatment of Vero cells with purified α-toxin activated the extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 arms of the MAPK pathway and stimulated the release of TNF-α in a dose-dependent manner. Studies using inhibitors of all three MAPK components suggested that activation of ERK occurred in a Ras-c-Raf dependent manner, whereas activation of JNK and p38 occurred by a Ras-independent mechanism. Toxin-mediated activation was dependent on efficient receptor binding and pore formation and on an influx of extracellular calcium ions. In the mouse myonecrosis model we showed that the MAPK pathway was activated in tissues of infected mice, implying that it has an important role in the disease process.


Assuntos
Toxinas Bacterianas/toxicidade , Clostridium septicum/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Toxinas Bacterianas/genética , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Camundongos , Músculo Esquelético/enzimologia , Proteínas Citotóxicas Formadoras de Poros/genética , Sepse/enzimologia , Sepse/microbiologia , Baço/enzimologia , Células Vero
14.
Gut Microbes ; 5(5): 579-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483328

RESUMO

The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Fatores de Virulência/metabolismo , Humanos , Proibitinas , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/patogenicidade
15.
Anaerobe ; 30: 85-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25230331

RESUMO

We compared the identification of Clostridium species using mass spectrometry by two different Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) platforms (Bruker MS and Vitek MS) against 16S rRNA sequencing as the reference standard. We then examined the impact of different sample preparations and (on one of those platforms) age of bacterial colonial growth on the performance of the MALDI-TOF MS systems. We identified 10 different species amongst the 52 isolates by 16S rRNA sequencing, with Clostridium perfringens the most prevalent (n=30). Spectrometric analysis using Vitek MS correctly speciated 47/52 (90.4%) isolates and was not affected by the sample preparation used. Performance of the Bruker MS was dependent on sample preparation with correct speciation obtained for 36 of 52 (69.2%) isolates tested using the Direct Transfer [DT] protocol, but all 52 (100%) isolates were correctly speciated using either an Extended Direct Transfer [EDT] or a Full Formic Extraction [EX] protocol. We then examined the effect of bacterial colonial growth age on the performance of Bruker MS and found substantial agreement in speciation using DT (Kappa=0.62, 95% CI: 0.46-0.75), almost perfect agreement for EDT (Kappa=0.94, 95% CI: 0.86-1.00) and exact agreement for EX (Kappa=1.00) between different days.


Assuntos
Técnicas Bacteriológicas/métodos , Infecções por Clostridium/microbiologia , Clostridium/classificação , Clostridium/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Clostridium/química , Infecções por Clostridium/diagnóstico , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Padrões de Referência , Análise de Sequência de DNA , Manejo de Espécimes/métodos
16.
Int J Med Microbiol ; 304(8): 1147-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25190355

RESUMO

The clostridia cause many human and animal diseases, resulting in significant morbidity and mortality. Host damage results from the action of potent exotoxins, an important group of which is the large clostridial toxins (LCTs) produced by Clostridium difficile, Clostridium sordellii, Clostridium perfringens and Clostridium novyi. Knowledge of the structure and function of these toxins has been attained, however, apart from C. difficile, the regulatory pathways that control LCT production remain largely unknown. Here we show that LCT production in C. sordellii and C. perfringens is temporally regulated and repressed by glucose in a similar manner to C. difficile. Furthermore, we show that the TpeL-encoding gene of C. perfringens is located in an uncharacterized Pathogenicity Locus (PaLoc), along with accessory genes predicted to encode a bacteriophage holin-type protein and a TcdR-family alternative sigma factor, TpeR. Inactivation of tpeR demonstrated that TpeR is critical for C. perfringens TpeL production, in a similar manner to C. difficile TcdR and C. sordellii TcsR, but cross-complementation showed that TpeR is not functionally interchangeable with TcdR or TcsR. Although conserved mechanisms are employed by the clostridia to control LCT production there are important functional differences that distinguish members of the TcdR-family of clostridial alternative sigma factors.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridium perfringens/genética , Clostridium sordellii/genética , Regulação Bacteriana da Expressão Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium perfringens/metabolismo , Clostridium sordellii/metabolismo , Análise por Conglomerados , Ordem dos Genes , Teste de Complementação Genética , Glucose/metabolismo , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
17.
Appl Environ Microbiol ; 80(12): 3597-3603, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682304

RESUMO

TnpX is a site-specific recombinase responsible for the excision and insertion of the transposons Tn4451 and Tn4453 in Clostridium perfringens and Clostridium difficile, respectively. Here, we exploit phenotypic features of TnpX to facilitate genetic mutagenesis and complementation studies. Genetic manipulation of bacteria often relies on the use of antibiotic resistance genes; however, a limited number are available for use in the clostridia. The ability of TnpX to recognize and excise specific DNA fragments was exploited here as the basis of an antibiotic resistance marker recycling system, specifically to remove antibiotic resistance genes from plasmids in Escherichia coli and from marked chromosomal C. perfringens mutants. This methodology enabled the construction of a C. perfringens plc virR double mutant by allowing the removal and subsequent reuse of the same resistance gene to construct a second mutation. Genetic complementation can be challenging when the gene of interest encodes a product toxic to E. coli. We show that TnpX represses expression from its own promoter, PattCI, which can be exploited to facilitate the cloning of recalcitrant genes in E. coli for subsequent expression in the heterologous host C. perfringens. Importantly, this technology expands the repertoire of tools available for the genetic manipulation of the clostridia.


Assuntos
Proteínas de Bactérias/metabolismo , Clonagem Molecular/métodos , Clostridium perfringens/genética , DNA Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano , Recombinases/metabolismo , Proteínas de Bactérias/genética , Clostridium perfringens/enzimologia , DNA Nucleotidiltransferases , Escherichia coli/metabolismo , Teste de Complementação Genética , Recombinases/genética , Recombinação Genética
18.
Future Microbiol ; 9(3): 361-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24762309

RESUMO

Clostridium perfringens uses its arsenal of >16 toxins to cause histotoxic and intestinal infections in humans and animals. It has been unclear why this bacterium produces so many different toxins, especially since many target the plasma membrane of host cells. However, it is now established that C. perfringens uses chromosomally encoded alpha toxin (a phospholipase C) and perfringolysin O (a pore-forming toxin) during histotoxic infections. In contrast, this bacterium causes intestinal disease by employing toxins encoded by mobile genetic elements, including C. perfringens enterotoxin, necrotic enteritis toxin B-like, epsilon toxin and beta toxin. Like perfringolysin O, the toxins with established roles in intestinal disease form membrane pores. However, the intestinal disease-associated toxins vary in their target specificity, when they are produced (sporulation vs vegetative growth), and in their sensitivity to intestinal proteases. Producing many toxins with diverse characteristics likely imparts virulence flexibility to C. perfringens so it can cause an array of diseases.


Assuntos
Toxinas Bacterianas/metabolismo , Infecções por Clostridium/microbiologia , Clostridium perfringens/fisiologia , Doenças dos Animais/microbiologia , Doenças dos Animais/patologia , Animais , Infecções por Clostridium/patologia , Clostridium perfringens/patogenicidade , Gangrena Gasosa/microbiologia , Gangrena Gasosa/patologia , Humanos , Intestinos/microbiologia , Intestinos/patologia
19.
J Infect Dis ; 210(3): 483-92, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24550443

RESUMO

Gas gangrene is a potentially fatal disease that is primarily caused by the ubiquitous, anaerobic bacteria Clostridium perfringens and Clostridium septicum. Treatment is limited to antibiotic therapy, debridement of the infected tissue, and, in severe cases, amputation. The need for new treatment approaches is compelling. Opioid-based analgesics such as buprenorphine and morphine also have immunomodulatory properties, usually leading to faster disease progression. However, here we show that mice pretreated with buprenorphine and morphine do not die from clostridial myonecrosis. Treatment with buprenorphine after the onset of infection also arrested disease development. Protection against myonecrotic disease was specific to C. perfringens-mediated myonecrosis; buprenorphine did not protect against disease caused by C. septicum infection even though infections due to both species are very similar. These data provide the first evidence of a protective role for opioids during infection and suggest that new therapeutic strategies may be possible for the treatment of C. perfringens-mediated myonecrosis.


Assuntos
Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Clostridium perfringens , Gangrena Gasosa/tratamento farmacológico , Morfina/uso terapêutico , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Naltrexona/uso terapêutico
20.
PLoS One ; 6(7): e22762, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829506

RESUMO

Clostridium perfringens is the causative agent of clostridial myonecrosis or gas gangrene and produces many different extracellular toxins and enzymes, including the cysteine protease α-clostripain. Mutation of the α-clostripain structural gene, ccp, alters the turnover of secreted extracellular proteins in C. perfringens, but the role of α-clostripain in disease pathogenesis is not known. We insertionally inactivated the ccp gene C. perfringens strain 13 using TargeTron technology, constructing a strain that was no longer proteolytic on skim milk agar. Quantitative protease assays confirmed the absence of extracellular protease activity, which was restored by complementation with the wild-type ccp gene. The role of α-clostripain in virulence was assessed by analysing the isogenic wild-type, mutant and complemented strains in a mouse myonecrosis model. The results showed that although α-clostripain was the major extracellular protease, mutation of the ccp gene did not alter either the progression or the development of disease. These results do not rule out the possibility that this extracellular enzyme may still have a role in the early stages of the disease process.


Assuntos
Toxinas Bacterianas/metabolismo , Infecções por Clostridium/enzimologia , Clostridium perfringens/patogenicidade , Cisteína Endopeptidases/metabolismo , Necrose , Virulência/genética , Animais , Sobrevivência Celular , Células Cultivadas , Infecções por Clostridium/genética , Infecções por Clostridium/microbiologia , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Feminino , Hemoglobinas/metabolismo , Proteínas Hemolisinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mutagênese Insercional , Mutação/genética , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...