Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31854, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867978

RESUMO

In this study, TiO2 supported over embryonic Beta zeolite (BEA) was prepared for the photocatalytic degradation of Tetracycline (TC) antibiotic under visible light. The immobilization of sol-gel TiO2 over the zeolite increased its surface area from 33 (m2/g) to 226 (m2/g) and enhanced its adsorption efficiency from 8 % to 18 %. In order to expand the photocatalytic activity of TiO2 towards the visible light region (i.e. λ > 380 nm), two different metal sensitization techniques with Iron ions from aqueous solution of FeCl3 were explored. In the ion-exchange method, the substitutional cations within the TiO2/BEA structure were exchanged with Fe3+. Whereas, in the doping technique, solgel TiO2 was doped with Fe3+ during its synthesis and before its immobilization over Zeolite. Four different samples with 20, 40, 60, and 100 % w/w of TiO2/BEA ratio were prepared. After testing the various ion-exchanged photocatalysts under blue and white lights, only Fe-60%TiO2/BEA showed better activity compared to pure TiO2 under white light at TC initial concentration, C o = 20 ppm. For the doped immobilized Titania with 60 wt% TiO2/BEA, three different doped photocatalysts were prepared with 3 %, 7 %, and 10 % per mole Fe/TiO2. All the Fe-doped TiO2/BEA photocatalysts showed better activity compared to pure TiO2 under white light. Under solar irradiations, the 3 % Fe-doped TiO2/BEA was able to degrade all TC within 120 min, while Fe-60%TiO2/BEA needed 200 min, and TiO2 needed more than 300 min. This enhanced performance was a result of both increased surface area due to immobilization over BEA as well as iron doping by Fe3+ that simultaneously increased the visible light absorption of TiO2 and minimized the charge carrier recombination effect.

2.
Curr Med Chem ; 28(12): 2346-2368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32778020

RESUMO

Andrographolide, the main bioactive component separated from Andrographis paniculata in 1951, has been scrutinized with a modern drug discovery approach for anti-inflammatory properties since 1984. Identification of new uses of existing drugs can be facilitated by searching for evidence linking them to known or yet undiscovered drug targets and human disease states to develop new therapeutic indications.Furthermore, a wide spectrum of biological properties of andrographolide such as anticancer, antibacterial, antiviral, hepatoprotective, antioxidant, anti-malarial, anti-atherosclerosis are also reported. However, poor water solubility and instability limit its clinical application. It becomes crucial to enhance its pharmacological function and find a new treatment option for more diseases. Therefore, this article reviews the major recent developments in andrographolide, including repurposing applications in different diseases and underlying mechanisms, particularly focusing on pharmacological enhancement of andrographolide such as derivatives, chemical modifications with potent biological activity and drug delivery. The repurposing and pharmacological enhancement of andrographolide would not only have exciting therapeutic potential to different diseases to facilitate drug marketing, but also decrease the economic burden on healthcare worldwide.


Assuntos
Andrographis , Diterpenos , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Reposicionamento de Medicamentos , Humanos
3.
Sci Rep ; 9(1): 1558, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733474

RESUMO

Fibrinogen is one of the key proteins that participate in the protein corona composition of many types of nanoparticles (NPs), and its conformational changes are crucial for activation of immune systems. Recently, we demonstrated that the fibrinogen highly contributed in the protein corona composition at the surface of zeolite nanoparticles. Therefore, understanding the interaction of fibrinogen with zeolite nanoparticles in more details could shed light of their safe applications in medicine. Thus, we probed the molecular interactions between fibrinogen and zeolite nanoparticles using both experimental and simulation approaches. The results indicated that fibrinogen has a strong and thermodynamically favorable interaction with zeolite nanoparticles in a non-cooperative manner. Additionally, fibrinogen experienced a substantial conformational change in the presence of zeolite nanoparticles through a concentration-dependent manner. Simulation results showed that both E- and D-domain of fibrinogen are bound to the EMT zeolite NPs via strong electrostatic interactions, and undergo structural changes leading to exposing normally buried sequences. D-domain has more contribution in this interaction and the C-terminus of γ chain (γ377-394), located in D-domain, showed the highest level of exposure compared to other sequences/residues.


Assuntos
Fenômenos Químicos , Fibrinogênio/química , Modelos Moleculares , Nanopartículas/química , Zeolitas/química , Sítios de Ligação , Humanos , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Nanopartículas/ultraestrutura , Ligação Proteica , Análise Espectral , Termodinâmica
4.
Molecules ; 23(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364144

RESUMO

Enriching oxygen content within nanosized zeolite X (as synthesized Na-X) by insertion of cerium (ion exchanged Ce-X) and functionalization with bromoperfluoro-n-octane (fluorinated F-X) is reported. The materials were fully characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, thermogravimetric analysis (TGA), nitrogen adsorption, and nuclear magnetic resonance (19F NMR). The O2 adsorption in the zeolite samples at various concentrations (0 to 165 Torr) at -196 °C was studied by in situ FTIR. The modification of nanosized zeolites did not alter their colloidal stability, crystallinity, porosity, and particle size distribution. The inclusion of cerium and bromoperfluoro-n-octane considerably increase the oxygen capacity by 33% for samples Ce-X and F-X in comparison to the as-synthesized Na-X zeolite. Further, toxicity tests revealed that these materials are safe, which opens the door for their implementation in medical applications, where controlled delivery of oxygen is highly desirable.


Assuntos
Cério/química , Halogenação , Nanopartículas/química , Oxigênio/química , Zeolitas/química , Adsorção , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
5.
ACS Appl Mater Interfaces ; 8(45): 30768-30779, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27766857

RESUMO

EMT-type zeolite nanoparticles (EMT NPs) with particle size of 10-20 nm and external surface area of 200 m2/g have shown high selective affinity toward plasma protein (fibrinogen). Besides, the EMT NPs have demonstrated no adverse effect on blood coagulation hemostasis. Therefore, it was envisioned that the EMT NPs could inhibit possible ß-amyloid (Aß)-fibrinogen interactions that result in the formation of structurally abnormal clots, which are resistant to lysis, in cerebral vessels of patients with Alzheimer disease (AD). To evaluate this hypothesis, the clot formation and degradation of Aß-fibrinogen in the presence and absence of the EMT zeolite NPs were assessed. The results clearly showed that the delay in clot dissolution was significantly reduced in the presence of zeolite NPs. By formation of protein corona, the EMT NPs showed a negligible reduction in their inhibitory strength. Docking of small molecules (Aß-fibrinogen) introduced a novel potential inhibitory candidate. The zeolite NPs showed similar inhibitory effects on binding of fibrinogen to both Aß(25-35) and/or Aß(1-42). This indicates that the inhibitory strength of these NPs is independent of Aß sequence, and it is suggested that the zeolite NPs adsorb fibrinogen and specifically obstruct their Aß binding sites. Therefore, the zeolite NPs can be the safe and effective inhibitors in preventing Aß-fibrinogen interaction and consequent cognitive damage.


Assuntos
Nanopartículas Metálicas , Doença de Alzheimer , Peptídeos beta-Amiloides , Fibrinogênio , Humanos , Zeolitas
6.
Phys Chem Chem Phys ; 18(44): 30585-30594, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27785497

RESUMO

Nanosized EMT-type zeolite crystals in sodium (Na-EMT) and ion-exchanged lithium (Li-EMT) forms were prepared. The sorption behavior of Li(Na)-EMT samples towards water, methanol and a mixture of both (50 : 50) was studied by combined thermogravimetric and infrared spectroscopic methods. The stability of the samples prior to and after the sorption measurements in two subsequent cycles was confirmed by X-ray diffraction, N2 sorption and NMR spectroscopy. The high sorption capacity of the Li-EMT sample towards water was demonstrated. It was found that the methanol is replaced by water faster in the Li-EMT sample in comparison to the Na-EMT sample. At low temperature, the methanol shows weak adsorption on each cationic site and no side products during desorption for both samples were obtained.

7.
Nanoscale Res Lett ; 10(1): 956, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26058517

RESUMO

Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li(+), Na(+), K(+), Ca(2+)) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, (1)H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.

8.
J Agric Food Chem ; 63(18): 4655-63, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25897618

RESUMO

The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.


Assuntos
Nanopartículas/química , Óleos de Plantas/química , Zeolitas/química , Temperatura Alta , Espectroscopia de Ressonância Magnética , Oxirredução , Óleo de Palmeira , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Nat Mater ; 14(4): 447-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25559425

RESUMO

Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm(3) g(-1)) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

10.
Sensors (Basel) ; 14(7): 12207-18, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25010695

RESUMO

The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb(2)O(5) films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n) and thicknesses (d) of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM). The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb(2)O(5) and MEL type zeolite as a chemical sensor with optical read-out is discussed.

11.
Dalton Trans ; 43(23): 8868-76, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24788570

RESUMO

Zeolite films (LTL, BEA and MFI) are prepared with a thickness in the range 50-170 nm through a multistep spin-on deposition method. The optical properties of the zeolite films including refractive index, extinction coefficient and thickness are determined from the reflectance spectra using a nonlinear curve fitting method. The total free pore volume of the films using the Bruggeman effective medium theory is calculated. The potential of the zeolite films for broadband antireflection (AR) application is demonstrated. Five times reduction of the reflectance of a silicon substrate covered with the double AR films comprising of MFI type zeolite (120 nm) deposited on Nb2O5 (60 nm) is achieved. Additionally, the MFI zeolite film is used as a building block of vapor responsive Bragg stacks with a strong response towards acetone. The reversible response of the Bragg stacks towards acetone without additional annealing opens up the possibility of preparing sensors with optical read-out by incorporation of sensitive and transducer elements into a single device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...