Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 16(1): 149, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961406

RESUMO

BACKGROUND: Enlarged choroid plexus (ChP) volume has been reported in patients with Alzheimer's disease (AD) and inversely correlated with cognitive performance. However, its clinical diagnostic and predictive value, and mechanisms by which ChP impacts the AD continuum remain unclear. METHODS: This prospective cohort study enrolled 607 participants [healthy control (HC): 110, mild cognitive impairment (MCI): 269, AD dementia: 228] from the Chinese Imaging, Biomarkers, and Lifestyle study between January 1, 2021, and December 31, 2022. Of the 497 patients on the AD continuum, 138 underwent lumbar puncture for cerebrospinal fluid (CSF) hallmark testing. The relationships between ChP volume and CSF pathological hallmarks (Aß42, Aß40, Aß42/40, tTau, and pTau181), neuropsychological tests [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Neuropsychiatric Inventory (NPI), and Activities of Daily Living (ADL) scores], and multimodal neuroimaging measures [gray matter volume, cortical thickness, and corrected cerebral blood flow (cCBF)] were analyzed using partial Spearman's correlation. The mediating effects of four neuroimaging measures [ChP volume, hippocampal volume, lateral ventricular volume (LVV), and entorhinal cortical thickness (ECT)] on the relationship between CSF hallmarks and neuropsychological tests were examined. The ability of the four neuroimaging measures to identify cerebral Aß42 changes or differentiate among patients with AD dementia, MCI and HCs was determined using receiver operating characteristic analysis, and their associations with neuropsychological test scores at baseline were evaluated by linear regression. Longitudinal associations between the rate of change in the four neuroimaging measures and neuropsychological tests scores were evaluated on the AD continuum using generalized linear mixed-effects models. RESULTS: The participants' mean age was 65.99 ± 8.79 years. Patients with AD dementia exhibited the largest baseline ChP volume than the other groups (P < 0.05). ChP volume enlargement correlated with decreased Aß42 and Aß40 levels; lower MMSE and MoCA and higher NPI and ADL scores; and lower volume, cortical thickness, and cCBF in other cognition-related regions (all P < 0.05). ChP volume mediated the association of Aß42 and Aß40 levels with MMSE scores (19.08% and 36.57%), and Aß42 levels mediated the association of ChP volume and MMSE or MoCA scores (39.49% and 34.36%). ChP volume alone better identified cerebral Aß42 changes than LVV alone (AUC = 0.81 vs. 0.67, P = 0.04) and EC thickness alone (AUC = 0.81 vs.0.63, P = 0.01) and better differentiated patients with MCI from HCs than hippocampal volume alone (AUC = 0.85 vs. 0.81, P = 0.01), and LVV alone (AUC = 0.85 vs.0.82, P = 0.03). Combined ChP and hippocampal volumes significantly increased the ability to differentiate cerebral Aß42 changes and patients among AD dementia, MCI, and HCs groups compared with hippocampal volume alone (all P < 0.05). After correcting for age, sex, years of education, APOE ε4 status, eTIV, and hippocampal volume, ChP volume was associated with MMSE, MoCA, NPI, and ADL score at baseline, and rapid ChP volume enlargement was associated with faster deterioration in NPI scores with an average follow-up of 10.03 ± 4.45 months (all P < 0.05). CONCLUSIONS: ChP volume may be a novel neuroimaging marker associated with neurodegenerative changes and clinical AD manifestations. It could better detect the early stages of the AD and predict prognosis, and significantly enhance the differential diagnostic ability of hippocampus on the AD continuum.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Plexo Corióideo , Disfunção Cognitiva , Neuroimagem , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Feminino , Masculino , Idoso , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/patologia , Estudos Prospectivos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Neuroimagem/métodos , Biomarcadores/líquido cefalorraquidiano , Pessoa de Meia-Idade , Testes Neuropsicológicos , Imageamento por Ressonância Magnética/métodos , Proteínas tau/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
2.
Pharmacol Res ; 203: 107168, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583689

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.


Assuntos
Complexo Principal de Histocompatibilidade , Doença de Parkinson , Animais , Humanos , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Complexo Principal de Histocompatibilidade/imunologia , Microglia/imunologia , Microglia/metabolismo , Doença de Parkinson/imunologia , Doença de Parkinson/genética
3.
Vaccines (Basel) ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140265

RESUMO

Hepatitis B virus (HBV) infection is a global public health problem that is closely related to liver cirrhosis and hepatocellular carcinoma (HCC). The prevalence of acute and chronic HBV infection, liver cirrhosis, and HCC has significantly decreased as a result of the introduction of universal HBV vaccination programs. The first hepatitis B vaccine approved was developed by purifying the hepatitis B surface antigen (HBsAg) from the plasma of asymptomatic HBsAg carriers. Subsequently, recombinant DNA technology led to the development of the recombinant hepatitis B vaccine. Although there are already several licensed vaccines available for HBV infection, continuous research is essential to develop even more effective vaccines. Prophylactic hepatitis B vaccination has been important in the prevention of hepatitis B because it has effectively produced protective immunity against hepatitis B viral infection. Prophylactic vaccines only need to provoke neutralizing antibodies directed against the HBV envelop proteins, whereas therapeutic vaccines are most likely needed to induce a comprehensive T cell response and thus, should include other HBV antigens, such as HBV core and polymerase. The existing vaccines have proven to be highly effective in preventing HBV infection, but ongoing research aims to improve their efficacy, duration of protection, and accessibility. The routine administration of the HBV vaccine is safe and well-tolerated worldwide. The purpose of this type of immunization is to trigger an immunological response in the host, which will halt HBV replication. The clinical efficacy and safety of the HBV vaccine are affected by a number of immunological and clinical factors. However, this success is now in jeopardy due to the breakthrough infections caused by HBV variants with mutations in the S gene, high viral loads, and virus-induced immunosuppression. In this review, we describe various types of available HBV vaccines, along with the recent progress in the ongoing battle to develop new vaccines against HBV.

4.
Biomed Pharmacother ; 163: 114904, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207431

RESUMO

More than 250 million people worldwide have chronic hepatitis B virus (HBV) infections, resulting in over 1 million annual fatalities because HBV cannot be adequately treated with current antivirals. Hepatocellular carcinoma (HCC) risk is elevated in the presence of the HBV. Novel and powerful medications that specifically target the persistent viral components are needed to remove infection. This study aimed to use HepG2.2.15 cells and the rAAV-HBV1.3 C57BL/6 mouse model established in our laboratory to examine the effects of 16F16 on HBV. The transcriptome analysis of the samples was performed to examine the impact of 16F16 therapy on host factors. We found that the HBsAg and HBeAg levels significantly decreased in a dose-dependent manner following the 16F16 treatment. 16F16 also showed significant anti-hepatitis B effects in vivo. The transcriptome analysis showed that 16F16 regulated the expression of several proteins in HBV-producing HepG2.2.15 cells. As one of the differentially expressed genes, the role of S100A3 in the anti-hepatitis B process of 16F16 was further investigated. The expression of the S100A3 protein significantly decreased following the 16F16 therapy. And upregulation of S100A3 caused an upregulation of HBV DNA, HBsAg, and HBeAg in HepG2.2.15 cells. Similarly, knockdown of S100A3 significantly reduced the levels of HBsAg, HBeAg, and HBV DNA. Our findings proved that S100A3 might be a new target for combating HBV pathogenesis. 16F16 can target several proteins involved in HBV pathogenesis, and may be a promising drug precursor molecule for the treatment of HBV.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Animais , Camundongos , DNA Viral/genética , Perfilação da Expressão Gênica , Antígenos E da Hepatite B , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B , Hepatite B Crônica/tratamento farmacológico , Camundongos Endogâmicos C57BL , Transcriptoma , Humanos , Células Hep G2/metabolismo , Células Hep G2/virologia , Antivirais/farmacologia
5.
Front Mol Neurosci ; 16: 1097633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896008

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disease associated with the intracellular organelles. Leucine-rich repeat kinase 2 (LRRK2) is a large multi-structural domain protein, and mutation in LRRK2 is associated with PD. LRRK2 regulates intracellular vesicle transport and function of organelles, including Golgi and lysosome. LRRK2 phosphorylates a group of Rab GTPases, including Rab29, Rab8, and Rab10. Rab29 acts in a common pathway with LRRK2. Rab29 has been shown to recruit LRRK2 to the Golgi complex (GC) to stimulate LRRK2 activity and alter the Golgi apparatus (GA). Interaction between LRRK2 and Vacuolar protein sorting protein 52 (VPS52), a subunit of the Golgi-associated retrograde protein (GARP) complex, mediates the function of intracellular soma trans-Golgi network (TGN) transport. VPS52 also interacts with Rab29. Knockdown of VPS52 leads to the loss of LRRK2/Rab29 transported to the TGN. Rab29, LRRK2, and VPS52 work together to regulate functions of the GA, which is associated with PD. We highlight recent advances in the roles of LRRK2, Rabs, VPS52, and other molecules, such as Cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in the GA, and discuss their possible association with the pathological mechanisms of PD.

6.
Front Pharmacol ; 13: 984997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091781

RESUMO

Methamphetamine (METH) is an illicit psychostimulant that is widely abused. The molecular mechanism of METH addiction is complicated and still unknown. METH causes the release of the neurotransmitters including dopamine, glutamate, norepinephrine and serotonin, which activate various brain areas in the central nervous system. METH also induces synaptic plasticity and pathological memory enhancement. Epigenetics plays the important roles in regulating METH addiction. This review will briefly summarize the studies on epigenetics involved in METH addiction.

7.
Antioxid Redox Signal ; 36(13-15): 1023-1036, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34465198

RESUMO

Significance: Thioredoxin 1 (Trx1) is a ubiquitous protein that is found in organisms ranging from prokaryotes to eukaryotes. Trx1 acts as reductases in redox regulation and protects proteins from oxidative aggregation and inactivation. Trx1 helps the cells to cope with various environmental stresses and inhibits programmed cell death. It is beneficial to neuroregeneration and resistance against oxidative stress-associated neuron damage. Trx1 also plays important roles in suppressing neurodegenerative disorders. Recent Advances: Trx1 is a redox regulating protein involved in neuronal protection. According to a previous study, Trx1 expression is increased by nerve growth factor (NGF) and necessary for neurite outgrowth of PC12 cells. Trx1 has been shown to promote the growth of neurons. Trx1 knockout or knockdown has the worse impact on cell viability and survival. Critical Issues: Trx1 has functions in central nervous system. Trx1 plays the defensive roles against oxidative stress in neurodegenerative diseases. Future Directions: In this review, we focus on the structure of Trx1 and basic functions of Trx1. Trx1 plays a neuroprotective role by suppressing endoplasmic reticulum stress in Parkinson's disease. Neurodegenerative diseases have no cure and carry a high cost to the health care system and patient's families. Trx1 may be taken as a new target for neurodegenerative disorder therapy. Further studies of the Trx1 roles and mechanisms on neurodegenerative diseases are needed. Antioxid. Redox Signal. 36, 1023-1036.


Assuntos
Doenças Neurodegenerativas , Tiorredoxinas , Animais , Sobrevivência Celular , Humanos , Oxirredução , Estresse Oxidativo/fisiologia , Ratos , Tiorredoxinas/metabolismo
8.
Biomed Pharmacother ; 143: 112110, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474345

RESUMO

The catalysis of disulphide (SS) bonds is the most important characteristic of protein disulphide isomerase (PDI) family. Catalysis occurs in the endoplasmic reticulum, which contains many proteins, most of which are secretory in nature and that have at least one s-s bond. Protein disulphide isomerase A3 (PDIA3) is a member of the PDI family that acts as a chaperone. PDIA3 is highly expressed in response to cellular stress, and also intercept the apoptotic cellular death related to endoplasmic reticulum (ER) stress, and protein misfolding. PDIA3 expression is elevated in almost 70% of cancers and its expression has been linked with overall low cell invasiveness, survival and metastasis. Viral diseases present a significant public health threat. The presence of PDIA3 on the cell surface helps different viruses to enter the cells and also helps in replication. Therefore, inhibitors of PDIA3 have great potential to interfere with viral infections. In this review, we summarize what is known about the basic structure, functions and role of PDIA3 in viral infections. The review will inspire studies of pathogenic mechanisms and drug targeting to counter viral diseases.


Assuntos
Isomerases de Dissulfetos de Proteínas/metabolismo , Viroses/enzimologia , Viroses/virologia , Internalização do Vírus , Replicação Viral , Vírus/crescimento & desenvolvimento , Animais , Antivirais/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Interações Hospedeiro-Patógeno , Humanos , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Viroses/tratamento farmacológico , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...