Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 14(10): e30884, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36465763

RESUMO

Peri-implant disease is usually caused by the accumulation of dental biofilm around the implant, and this biofilm can irradiate the gingiva tissue, which leads to inflammation and, more severely, to a deterioration of the bone structure. There is a concern regarding the removal of biofilm from the implant surface by using different hygiene instruments. Some hygiene instruments may have some effect on the dental implant surface, resulting in roughening or damage to the implant surfaces. This study reviewed the effects of titanium implant surfaces on different hygiene instruments. A literature search was conducted from PubMed, ScienceDirect, and Scopus databases for articles published from 1992 to 2021. A total of 19 full-text papers with keywords of interest that met all the eligibility criteria were selected. Surface roughness was evaluated with a scanning electron microscope and also using a profilometer, laser scanning, scanning probe, and atomic force microscopes. A metal curette produced a roughened surface on the titanium implant, but a plastic curette did not alter the surface. Instrumentation with rubber cups left the surface unchanged and appeared to smoothen the surface, whereas the air-powder abrasive instrumentation altered the surface with the presence of micro pits and pores. A conventional metal ultrasonic scaler showed significant surface topographical changes and scratches on both titanium surfaces, as a diode laser, light-emitting diode (LED), and laser treatment did not show any alteration on the rough and smooth titanium surfaces. Thus, a non-metallic instrument such as a plastic curette, rubber cups, and novel technology including diode laser, LED, and laser treatment is appropriate and can be used for debridement on smooth and machined titanium implant surfaces as well as sandblasted and acid-etched (SLA), titanium plasma-sprayed (TPS), and resorbable blasted media (RBM) surfaces. The use of metallic instruments should be avoided, and it is not recommended.

3.
Front Physiol ; 11: 587381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329037

RESUMO

Chronic periodontitis (CP) is an oral cavity disease arising from chronic inflammation of the periodontal tissues. Exosomes are lipid vesicles that are enriched in specific microRNAs (miRNAs), potentially providing a disease-specific diagnostic signature. To assess the value of exosomal miRNAs as biomarkers for CP, 8 plasma- and 8 salivary-exosomal miRNAs samples were profiled using Agilent platform (comparative study). From 2,549 probed miRNAs, 33 miRNAs were significantly down-regulated in CP as compared to healthy plasma samples. Whereas, 1,995 miRNAs (1,985 down-regulated and 10 up-regulated) were differentially expressed in the CP as compared to healthy saliva samples. hsa-miR-let-7d [FC = -26.76; AUC = 1; r = -0.728 [p-value = 0.04]), hsa-miR-126-3p (FC = -24.02; AUC = 1; r = -0.723 [p-value = 0.043]) and hsa-miR-199a-3p (FC = -22.94; AUC = 1; r = -0.731 [p-value = 0.039]) are worth to be furthered studied for plasma-exosomal samples. Meanwhile, for salivary-exosomal samples, hsa-miR-125a-3p (FC = 2.03; AUC = 1; r = 0.91 [p-value = 0.02]) is worth to be furthered studied. These miRNAs are the reliable candidates for the development of periodontitis biomarker, as they were significantly expressed differently between CP and healthy samples, have a good discriminatory value and strongly correlate with the mean of PPD. These findings highlight the potential of exosomal miRNAs profiling in the diagnosis from both sourced as well as provide new insights into the molecular mechanisms involved in CP.

5.
Inflamm Res ; 63(12): 1001-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25369802

RESUMO

OBJECTIVE: IL-17A is implicated in periodontitis pathogenesis. The roles of IL-17B-IL-17F and IL-17A/F are unknown. This study aimed to determine clinical associations between IL-17 family cytokines and periodontitis and to investigate the biological roles of IL-17A and IL-17E using in vitro model systems. MATERIALS AND METHODS: Samples from 97 patients with periodontitis and 77 healthy volunteers were used in the study. Serum, saliva and gingival crevicular fluid (GCF) levels of IL-17 family cytokines were measured by ELISA. Oral keratinocytes were stimulated with a P. gingivalis biofilm, or IL-17A, in the presence and absence of IL-17E and the expression of IL-8 and CXCL5 were investigated by ELISA and real-time-PCR. NF-κB phosphorylation in similar experiments was also measured using a cell-based ELISA. RESULTS: Serum, saliva and GCF IL-17A levels were higher in periodontitis patients and correlated positively with clinical parameters of attachment loss, pocket depth and bleeding on probing. Serum IL-17E levels were lower in periodontitis patients and the serum IL-17A:IL-17E ratio correlated positively with clinical parameters. In vitro, IL-17E inhibited Porphyromonas gingivalis and IL-17A induced expression of chemokines by reducing phosphorylation of the NF-κB p65 subunit. CONCLUSIONS: Serum IL-17A:IL-17E may be a marker of disease severity. IL-17E may have opposing roles to IL-17A in periodontitis pathogenesis. IL-17E can negatively regulate IL-17A and periodontal pathogen induced expression of chemokines by oral keratinocytes.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica , Interleucina-17/metabolismo , Periodontite/imunologia , Periodontite/metabolismo , Adulto , Biofilmes , Biomarcadores/sangue , Estudos de Casos e Controles , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Feminino , Líquido do Sulco Gengival/imunologia , Humanos , Queratinócitos/citologia , Masculino , Pessoa de Meia-Idade , Porphyromonas gingivalis/metabolismo
6.
Inflamm Res ; 63(7): 557-68, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24609617

RESUMO

OBJECTIVE: The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes. MATERIALS AND METHODS: Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to Porphyromonas gingivalis in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to P. gingivalis lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-bla cell reporter assay. RESULTS: Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited P. gingivalis-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to P. gingivalis lipopolysaccharide. CONCLUSION: These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.


Assuntos
Interleucina-8/imunologia , Queratinócitos/imunologia , Receptor Nicotínico de Acetilcolina alfa7/imunologia , Acetilcolina/imunologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bungarotoxinas/farmacologia , Células CHO , Cricetulus , Humanos , Queratinócitos/efeitos dos fármacos , Lipopolissacarídeos , Mucosa Bucal/citologia , Doenças Periodontais/genética , Doenças Periodontais/imunologia , Porphyromonas gingivalis , Quinuclidinas/farmacologia , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/imunologia , Fator de Transcrição RelA/imunologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...