Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37515169

RESUMO

HSV-1 disease is a significant public health burden causing orofacial, genital, cornea, and brain infection. We previously reported that a trivalent HSV-2 gC2, gD2, gE2 nucleoside-modified mRNA-lipid nanoparticle (LNP) vaccine provides excellent protection against vaginal HSV-1 infection in mice. Here, we evaluated whether this HSV-2 gC2, gD2, gE2 vaccine is as effective as a similar HSV-1 mRNA LNP vaccine containing gC1, gD1, and gE1 in the murine lip and genital infection models. Mice were immunized twice with a total mRNA dose of 1 or 10 µg. The two vaccines produced comparable HSV-1 neutralizing antibody titers, and surprisingly, the HSV-2 vaccine stimulated more potent CD8+ T-cell responses to gE1 peptides than the HSV-1 vaccine. Both vaccines provided complete protection from clinical disease in the lip model, while in the genital model, both vaccines prevented death and genital disease, but the HSV-1 vaccine reduced day two vaginal titers slightly better at the 1 µg dose. Both vaccines prevented HSV-1 DNA from reaching the trigeminal or dorsal root ganglia to a similar extent. We conclude that the trivalent HSV-2 mRNA vaccine provides outstanding protection against HSV-1 challenge at two sites and may serve as a universal prophylactic vaccine for HSV-1 and HSV-2.


Assuntos
Herpes Genital , Herpesvirus Humano 1 , Feminino , Animais , Camundongos , Herpesvirus Humano 2/genética , Herpesvirus Humano 1/genética , Herpes Genital/prevenção & controle , Nucleosídeos , Anticorpos Neutralizantes , Proteínas do Envelope Viral , Anticorpos Antivirais , RNA Mensageiro/genética
2.
Viruses ; 15(5)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37243234

RESUMO

Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of infected individuals. Therapeutic vaccines are urgently needed to reduce the frequency of genital lesions and transmission. S-540956 is a novel vaccine adjuvant that contains CpG oligonucleotide ODN2006 annealed to its complementary sequence and conjugated to a lipid that targets the adjuvant to lymph nodes. Our primary goal was to compare S-540956 administered with HSV-2 glycoprotein D (gD2) with no treatment in a guinea pig model of recurrent genital herpes (studies 1 and 2). Our secondary goals were to compare S-540956 with oligonucleotide ODN2006 (study1) or glucopyranosyl lipid A in a stable oil-in-water nano-emulsion (GLA-SE) (study 2). gD2/S-540956 reduced the number of days with recurrent genital lesions by 56%, vaginal shedding of HSV-2 DNA by 49%, and both combined by 54% compared to PBS, and was more efficacious than the two other adjuvants. Our results indicate that S-540956 has great potential as an adjuvant for a therapeutic vaccine for genital herpes, and merits further evaluation with the addition of potent T cell immunogens.


Assuntos
Herpes Genital , Vacinas , Feminino , Cobaias , Animais , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Qualidade de Vida , Proteínas do Envelope Viral , Adjuvantes Imunológicos , Genitália , Linfonodos , DNA
3.
Cell Rep Phys Sci ; 4(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38239491

RESUMO

Herpes simplex virus type 2 (HSV-2) infection, which is almost exclusively sexually transmitted, causes genital herpes. Although this lifelong and incurable infection is extremely widespread, currently there is no readily available diagnostic device that accurately detects HSV-2 antigens to a satisfactory degree. Here, we report an ultrasensitive electrochemical device that detects HSV-2 antigens within 9 min and costs just $1 (USD) to manufacture. The electrochemical biosensor is biofunctionalized with the human cellular receptor nectin-1 and detects the glycoprotein gD2, which is present within the HSV-2 viral envelope. The performance of the device is tested in a guinea pig model that mimics human biofluids, yielding 88.9% sensitivity, 100.0% specificity, and 95.0% accuracy under these conditions, with a limit of detection of 0.019 fg mL-1 for gD2 protein and 0.057 PFU mL-1 for titered viral samples. Importantly, no cross-reactions with other viruses were detected, indicating the adequate robustness and selectivity of the sensor. Our low-cost technology could facilitate more frequent testing for HSV-2.

4.
J Infect Dis ; 226(9): 1499-1509, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451492

RESUMO

Herpes simplex virus (HSV) infection of the neonatal brain causes severe encephalitis and permanent neurologic deficits. However, infants infected with HSV at the time of birth follow varied clinical courses, with approximately half of infants experiencing only external infection of the skin rather than invasive neurologic disease. Understanding the cause of these divergent outcomes is essential to developing neuroprotective strategies. To directly assess the contribution of viral variation to neurovirulence, independent of human host factors, we evaluated clinical HSV isolates from neonates with different neurologic outcomes in neurologically relevant in vitro and in vivo models. We found that isolates taken from neonates with encephalitis are more neurovirulent in human neuronal culture and mouse models of HSV encephalitis, as compared to isolates collected from neonates with skin-limited disease. These findings suggest that inherent characteristics of the infecting HSV strain contribute to disease outcome following neonatal infection.


Assuntos
Doenças Transmissíveis , Encefalite por Herpes Simples , Herpes Simples , Animais , Camundongos , Recém-Nascido , Humanos , Herpesvirus Humano 2 , Encéfalo
5.
Viruses ; 14(3)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35336946

RESUMO

The toxicity of mRNA-lipid nanoparticle (LNP) vaccines depends on the total mRNA-LNP dose. We established that the maximum tolerated dose of our trivalent mRNA-LNP genital herpes vaccine was 10 µg/immunization in mice. We then evaluated one of the mRNAs, gD2 mRNA-LNP, to determine how much of the 10 µg total dose to assign to this immunogen. We immunized mice with 0.3, 1.0, 3.0, or 10 µg of gD2 mRNA-LNP and measured serum IgG ELISA, neutralizing antibodies, and antibodies to six crucial gD2 epitopes involved in virus entry and spread. Antibodies to crucial gD2 epitopes peaked at 1 µg, while ELISA and neutralizing titers continued to increase at higher doses. The epitope results suggested no immunologic benefit above 1 µg of gD2 mRNA-LNP, while ELISA and neutralizing titers indicated higher doses may be useful. We challenged the gD2 mRNA-immunized mice intravaginally with HSV-2. The 1-µg dose provided total protection, confirming the epitope studies, and supported assigning less than one-third of the trivalent vaccine maximum dose of 10 µg to gD2 mRNA-LNP. Epitope mapping as performed in mice can also be accomplished in phase 1 human trials to help select the optimum dose of each immunogen in a multivalent vaccine.


Assuntos
Herpes Genital , Vacinas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/genética , Lipossomos , Camundongos , Nanopartículas , RNA Mensageiro/genética , Proteínas do Envelope Viral/genética
6.
Transl Res ; 242: 56-65, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954087

RESUMO

The rapid development of two nucleoside-modified mRNA vaccines that are safe and highly effective against coronavirus disease 2019 has transformed the vaccine field. The mRNA technology has the advantage of accelerated immunogen discovery, induction of robust immune responses, and rapid scale up of manufacturing. Efforts to develop genital herpes vaccines have been ongoing for 8 decades without success. The advent of mRNA technology has the potential to change that narrative. Developing a genital herpes vaccine is a high public health priority. A prophylactic genital herpes vaccine should prevent HSV-1 and HSV-2 genital lesions and infection of dorsal root ganglia, the site of latency. Vaccine immunity should be durable for decades, perhaps with the assistance of booster doses. While these goals have been elusive, new efforts with nucleoside-modified mRNA-lipid nanoparticle vaccines show great promise. We review past approaches to vaccine development that were unsuccessful or partially successful in large phase 3 trials, and describe lessons learned from these trials. We discuss our trivalent mRNA-lipid nanoparticle approach for a prophylactic genital herpes vaccine and the ability of the vaccine to induce higher titers of neutralizing antibodies and more durable CD4+ T follicular helper cell and memory B cell responses than protein-adjuvanted vaccines.


Assuntos
COVID-19 , Herpes Genital , Anticorpos Antivirais , Herpes Genital/prevenção & controle , Humanos , Lipossomos , Nanopartículas , SARS-CoV-2 , Vacinas Sintéticas , Proteínas do Envelope Viral/genética , Vacinas de mRNA
7.
Curr Protoc ; 1(12): e332, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34936238

RESUMO

This article describes procedures for two preclinical animal models for genital herpes infection. The guinea pig model shares many features of genital herpes in humans, including a natural route of inoculation, self-limiting primary vulvovaginitis, spontaneous recurrences, symptomatic and subclinical shedding of HSV-2, and latent infection of the associated sensory ganglia (lumbosacral dorsal root ganglia, DRG). Many humoral and cytokine responses to HSV-2 infection in the guinea pig have been characterized; however, due to the limited availability of immunological reagents, assessments of cellular immune responses are lacking. In contrast, the mouse model has been important in assessing cellular immune responses to herpes infection. Both the mouse and guinea pig models have been extremely useful for evaluating preventative and immunotherapeutic approaches for controlling HSV infection and recurrent disease. In this article, we describe procedures for infecting guinea pigs and mice with HSV-2, scoring subsequent genital disease, and measuring replicating virus to confirm infection. We also provide detailed protocols for dissecting and isolating DRG (the site of HSV-2 latency), quantifying HSV-2 genomic copies in DRG, and assessing symptomatic and subclinical shedding of HSV-2 in the vagina. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Primary and recurrent genital herpes infection in the guinea pig model Support Protocol 1: Blood collection via lateral saphenous vein or by cardiac puncture after euthanasia Support Protocol 2: Dissection and isolation of dorsal root ganglia from guinea pigs Support Protocol 3: PCR amplification and quantification of HSV-2 genomic DNA from samples Basic Protocol 2: Primary genital herpes infection in the mouse model Alternate Protocol: Flank infection with HSV-2 in the mouse model Support Protocol 4: Dissection and isolation of mouse dorsal root ganglia.


Assuntos
Doenças Genitais , Herpes Genital , Animais , Modelos Animais de Doenças , Feminino , Cobaias , Herpesvirus Humano 2 , Imunidade Celular , Camundongos
8.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618692

RESUMO

Nucleoside-modified mRNA vaccines have gained global attention because of COVID-19. We evaluated a similar vaccine approach for preventing a chronic, latent genital infection rather than an acute respiratory infection. We used animal models to compare an HSV-2 trivalent nucleoside-modified mRNA vaccine with the same antigens prepared as proteins, with an emphasis on antigen-specific memory B cell responses and immune correlates of protection. In guinea pigs, serum neutralizing-antibody titers were higher at 1 month and declined far less by 8 months in mRNA- compared with protein-immunized animals. Both vaccines protected against death and genital lesions when infected 1 month after immunization; however, protection was more durable in the mRNA group compared with the protein group when infected after 8 months, an interval representing greater than 15% of the animal's lifespan. Serum and vaginal neutralizing-antibody titers correlated with protection against infection, as measured by genital lesions and vaginal virus titers 2 days after infection. In mice, the mRNA vaccine generated more antigen-specific memory B cells than the protein vaccine at early times after immunization that persisted for up to 1 year. High neutralizing titers and robust B cell immune memory likely explain the more durable protection by the HSV-2 mRNA vaccine.


Assuntos
Herpes Genital , Herpesvirus Humano 2/imunologia , Memória Imunológica , Células B de Memória/imunologia , RNA Viral/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Feminino , Cobaias , Herpes Genital/imunologia , Herpes Genital/prevenção & controle , SARS-CoV-2/imunologia , Vacinas de mRNA
9.
Vaccine ; 38(47): 7409-7413, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33041105

RESUMO

Neonatal herpes is a dreaded complication of genital herpes infection in pregnancy. We recently compared two vaccine platforms for preventing genital herpes in female mice and guinea pigs and determined that HSV-2 glycoproteins C, D and E expressed using nucleoside-modified mRNA in lipid nanoparticles provided better protection than the same antigens produced as baculovirus proteins and administered with CpG and alum. Here we evaluated mRNA and protein immunization for protection against neonatal herpes. Female mice were immunized prior to mating and newborns were infected intranasally with HSV-2. IgG binding and neutralizing antibody levels in mothers and newborns were comparable using the mRNA or protein vaccines. Both vaccines protected first and second litter newborns against disseminated infection based on virus titers in multiple organs. We conclude that both vaccines are efficacious at preventing neonatal herpes, which leaves the mRNA vaccine as our preferred candidate based on better protection against genital herpes.


Assuntos
Herpes Genital , Vacinas contra o Vírus do Herpes Simples , Herpes Simples , Nanopartículas , Vacinas , Animais , Anticorpos Antivirais , Modelos Animais de Doenças , Feminino , Cobaias , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/genética , Lipídeos , Camundongos , Nucleosídeos , Gravidez , RNA Mensageiro/genética , Proteínas do Envelope Viral/genética
10.
PLoS Pathog ; 16(7): e1008795, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716975

RESUMO

HSV-1 causes 50% of first-time genital herpes infections in resource-rich countries and affects 190 million people worldwide. A prophylactic herpes vaccine is needed to protect against genital infections by both HSV-1 and HSV-2. Previously our laboratory developed a trivalent vaccine that targets glycoproteins C, D, and E present on the HSV-2 virion. We reported that this vaccine protects animals from genital disease and recurrent virus shedding following lethal HSV-2 challenge. Importantly the vaccine also generates cross-reactive antibodies that neutralize HSV-1, suggesting it may provide protection against HSV-1 infection. Here we compared the efficacy of this vaccine delivered as protein or nucleoside-modified mRNA immunogens against vaginal HSV-1 infection in mice. Both the protein and mRNA vaccines protected mice from HSV-1 disease; however, the mRNA vaccine provided better protection as measured by lower vaginal virus titers post-infection. In a second experiment, we compared protection provided by the mRNA vaccine against intravaginal challenge with HSV-1 or HSV-2. Vaccinated mice were totally protected against death, genital disease and infection of dorsal root ganglia caused by both viruses, but somewhat better protected against vaginal titers after HSV-2 infection. Overall, in the two experiments, the mRNA vaccine prevented death and genital disease in 54/54 (100%) mice infected with HSV-1 and 20/20 (100%) with HSV-2, and prevented HSV DNA from reaching the dorsal root ganglia, the site of virus latency, in 29/30 (97%) mice infected with HSV-1 and 10/10 (100%) with HSV-2. We consider the HSV-2 trivalent mRNA vaccine to be a promising candidate for clinical trials for prevention of both HSV-1 and HSV-2 genital herpes.


Assuntos
Proteção Cruzada/imunologia , Herpes Genital , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/imunologia , Latência Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Herpes Genital/virologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro , Proteínas do Envelope Viral/imunologia
11.
Hum Vaccin Immunother ; 16(9): 2109-2113, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347775

RESUMO

A vaccine to prevent genital herpes is an unmet public health need. We previously reported that a trivalent vaccine containing herpes simplex virus type 2 (HSV-2) glycoproteins C, D, and E (gC2, gD2, gE2) produced in baculovirus and administered with CpG/alum as adjuvants blocks immune evasion mediated by gC2 and gE2 and virus entry by gD2. The vaccine protected guinea pigs against HSV-2 vaginal infection. We evaluated whether the HSV-2 vaccine cross-protects against HSV-1 because many first-time genital herpes infections are now caused by HSV-1. Guinea pigs were mock immunized or immunized with the trivalent vaccine and challenged intravaginally with a different HSV-1 isolate in two experiments. Guinea pigs immunized with the trivalent vaccine developed genital lesions on fewer days than the mock group: 2/477 (0.4%) days compared to 15/424 (3.5%) in experiment one, and 0/135 days compared to 17/135 (12.6%) in experiment two (both P < .001). No animal in the trivalent group had HSV-2 DNA detected in vaginal secretions: 0/180 days for trivalent compared to 4/160 (2.5%) for mock (P < .05) in experiment one, and 0/65 days for trivalent compared to 4/65 (6%) for mock in experiment two. Therefore, a vaccine designed to prevent HSV-2 also protects against HSV-1 genital infection.


Assuntos
Herpes Genital , Herpes Simples , Herpesvirus Humano 1 , Vacinas , Animais , Feminino , Genitália , Cobaias , Herpes Genital/prevenção & controle , Herpesvirus Humano 2 , Proteínas do Envelope Viral
12.
Transl Res ; 220: 138-152, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32272093

RESUMO

Genital herpes increases the risk of acquiring and transmitting Human Immunodeficiency Virus (HIV), is a source of anxiety for many about transmitting infection to intimate partners, and is life-threatening to newborns. A vaccine that prevents genital herpes infection is a high public health priority. An ideal vaccine will prevent both genital lesions and asymptomatic subclinical infection to reduce the risk of inadvertent transmission to partners, will be effective against genital herpes caused by herpes simplex virus types 1 and 2 (HSV-1, HSV-2), and will protect against neonatal herpes. Three phase 3 human trials were performed over the past 20 years that used HSV-2 glycoproteins essential for virus entry as immunogens. None achieved its primary endpoint, although each was partially successful in either delaying onset of infection or protecting a subset of female subjects that were HSV-1 and HSV-2 uninfected against HSV-1 genital infection. The success of future vaccine candidates may depend on improving the predictive value of animal models by requiring vaccines to achieve near-perfect protection in these models and by using the models to better define immune correlates of protection. Many vaccine candidates are under development, including DNA, modified mRNA, protein subunit, killed virus, and attenuated live virus vaccines. Lessons learned from prior vaccine studies and select candidate vaccines are discussed, including a trivalent nucleoside-modified mRNA vaccine that our laboratory is pursuing. We are optimistic that an effective vaccine for prevention of genital herpes will emerge in this decade.


Assuntos
Herpes Genital/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Herpes Genital/imunologia , Humanos , Evasão da Resposta Imune
13.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188735

RESUMO

Herpes simplex virus (HSV) can cause severe infection in neonates leading to mortality and lifelong morbidity. Prophylactic approaches, such as maternal immunization, could prevent neonatal HSV (nHSV) infection by providing protective immunity and preventing perinatal transmission. We previously showed that maternal immunization with a replication-defective HSV vaccine candidate, dl5-29, leads to transfer of virus-specific antibodies into the neonatal circulation and protects against nHSV neurological sequela and mortality (C. D. Patel, I. M. Backes, S. A. Taylor, Y. Jiang, et al., Sci Transl Med, 11:eaau6039, 2019, https://doi.org/10.1126/scitranslmed.aau6039). In this study, we evaluated the efficacy of maternal immunization with an experimental trivalent (gC2, gD2, and gE2) subunit vaccine to protect against nHSV. Using a murine model of nHSV, we demonstrated that maternal immunization with the trivalent vaccine protected offspring against nHSV-disseminated disease and mortality. In addition, offspring of immunized dams were substantially protected from behavioral pathology following HSV infection. This study supports the idea that maternal immunization is a viable strategy for the prevention of neonatal infections.IMPORTANCE Herpes simplex virus is among the most serious infections of newborns. Current antiviral therapies can prevent mortality if infection is recognized early and treated promptly. Most children who survive nHSV develop lifelong neurological and behavioral deficits, despite aggressive antiviral treatment. We propose that maternal immunization could provide protection against HSV for both mother and baby. To this end, we used a trivalent glycoprotein vaccine candidate to demonstrate that offspring are protected from nHSV following maternal immunization. Significantly, this approach protected offspring from long-term behavioral morbidity. Our results emphasize the importance of providing protective immunity to neonates during this window of vulnerability.


Assuntos
Herpes Simples , Herpesvirus Humano 1/imunologia , Complicações Infecciosas na Gravidez , Animais , Animais Recém-Nascidos , Linhagem Celular , Criança , Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Humanos , Recém-Nascido , Camundongos , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia
14.
Sci Immunol ; 4(39)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541030

RESUMO

The goals of a genital herpes vaccine are to prevent painful genital lesions and reduce or eliminate subclinical infection that risks transmission to partners and newborns. We evaluated a trivalent glycoprotein vaccine containing herpes simplex virus type 2 (HSV-2) entry molecule glycoprotein D (gD2) and two immune evasion molecules: glycoprotein C (gC2), which binds complement C3b, and glycoprotein E (gE2), which blocks immunoglobulin G (IgG) Fc activities. The trivalent vaccine was administered as baculovirus proteins with CpG and alum, or the identical amino acids were expressed using nucleoside-modified mRNA in lipid nanoparticles (LNPs). Both formulations completely prevented genital lesions in mice and guinea pigs. Differences emerged when evaluating subclinical infection. The trivalent protein vaccine prevented dorsal root ganglia infection, and day 2 and 4 vaginal cultures were negative in 23 of 30 (73%) mice compared with 63 of 64 (98%) in the mRNA group (P = 0.0012). In guinea pigs, 5 of 10 (50%) animals in the trivalent subunit protein group had vaginal shedding of HSV-2 DNA on 19 of 210 (9%) days compared with 2 of 10 (20%) animals in the mRNA group that shed HSV-2 DNA on 5 of 210 (2%) days (P = 0.0052). The trivalent mRNA vaccine was superior to trivalent proteins in stimulating ELISA IgG antibodies, neutralizing antibodies, antibodies that bind to crucial gD2 epitopes involved in entry and cell-to-cell spread, CD4+ T cell responses, and T follicular helper and germinal center B cell responses. The trivalent nucleoside-modified mRNA-LNP vaccine is a promising candidate for human trials.


Assuntos
Herpes Genital/imunologia , Nucleosídeos/imunologia , RNA Mensageiro/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Cobaias , RNA Mensageiro/biossíntese , Proteínas do Envelope Viral/biossíntese
15.
NPJ Vaccines ; 4: 33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396405

RESUMO

One promising approach for a herpes simplex virus vaccine uses a vaccine to prime and a chemoattractant to pull immune cells into the genital tract. We evaluated subunit vaccines (prime) and imiquimod (pull) in the guinea pig (gp) model of recurrent Herpes simplex virus type-2 (HSV-2). Following vaginal HSV-2 infection, gps were vaccinated with various combination of glycoproteins and adjuvant with or without subcutaneous or local applications of imiquimod after infection. Animals were examined daily for recurrent lesions and vaginal swabs collected for recurrent shedding. Although both the vaccines alone and imiquimod alone reduced recurrent HSV disease, the combination of local imiquimod and vaccine (Prime and Pull) was the most effective. In the first study, immunization with the trivalent vaccine alone or imiquimod alone decreased recurrent disease. However, the largest decrease was with the combination of vaccine and local imiquimod (P < 0.001 vs. placebo or vaccine alone). No effect on recurrent shedding was observed. In the second study, recurrent disease scores were similar in the PBS control group and the trivalent-immunized group treated with subcutaneous imiquimod however, significant reductions with glycoprotein vaccines and local imiquimod (p < 0.01 vs. placebo) were noted. The number of qPCR-positive recurrent swabs, ranged from 5 to 11% in the vaccinated+local imiquimod groups compared 29% in the PBS control group (P < 0.05). No recurrent swab samples from vaccinated groups were culture positive. We conclude that the strategy of prime (subunit HSV vaccine) and topical pull (intravaginal/topical imiquimod) decreased recurrent HSV more effectively than vaccine alone.

16.
Vaccine ; 37(29): 3770-3778, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31153687

RESUMO

We are interested in developing a vaccine that prevents genital herpes. Adjuvants have a major impact on vaccine immunogenicity. We compared two adjuvants, an experimental Merck Sharp & Dohme lipid nanoparticle (LNP) adjuvant, LNP-2, with CpG oligonucleotide combined with alum for immunogenicity in mice when administered with herpes simplex virus type 2 (HSV-2) glycoproteins C, D and E (gC2, gD2, gE2). The immunogens are intended to produce neutralizing antibodies to gC2 and gD2, antibodies to gD2 and gE2 that block cell-to-cell spread, and antibodies to gE2 and gC2 that block immune evasion from antibody and complement, respectively. Overall, CpG/alum was better at producing serum and vaginal IgG binding antibodies, neutralizing antibodies, antibodies that block virus spread from cell-to-cell, and antibodies that block immune evasion domains on gC2. We used a novel high throughput biosensor assay to further assess differences in immunogenicity by mapping antibody responses to seven crucial epitopes on gD2 involved in virus entry or cell-to-cell spread. We found striking differences between CpG/alum and LNP-2. Mice immunized with gD2 CpG/alum produced higher titers of antibodies than LNP-2 to six of seven crucial epitopes and produced antibodies to more crucial epitopes than LNP-2. Measuring epitope-specific antibodies helped to define mechanisms by which CpG/alum outperformed LNP-2 and is a valuable technique to compare adjuvants.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Formação de Anticorpos , Epitopos/imunologia , Herpes Genital/prevenção & controle , Proteínas do Envelope Viral/imunologia , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Técnicas Biossensoriais , Feminino , Herpes Genital/imunologia , Vacinas contra Herpesvirus/imunologia , Evasão da Resposta Imune , Imunogenicidade da Vacina , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Proteínas do Envelope Viral/administração & dosagem , Internalização do Vírus
17.
Vaccine ; 37(4): 664-669, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30551986

RESUMO

Vaccines for prevention and treatment of genital herpes are high public health priorities. Our approach towards vaccine development is to focus on blocking virus entry mediated by herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) and to prevent the virus from evading complement and antibody attack by blocking the immune evasion domains on HSV-2 glycoproteins C (gC2) and E (gE2), respectively. HSV-2 gC2 and gE2 are expressed on the virion envelope and infected cell surface where they are potential targets of antibodies that bind and block their immune evasion activities. We demonstrate that antibodies produced during natural infection in humans or intravaginal inoculation in guinea pigs bind to gC2 but generally fail to block the immune evasion domains on this glycoprotein. In contrast, immunization of naïve or previously HSV-2-infected guinea pigs with gC2 subunit antigen administered with CpG and alum as adjuvants produces antibodies that block domains involved in immune evasion. These results indicate that immune evasion domains on gC2 are weak antigens during infection, yet when used as vaccine immunogens with adjuvants the antigens produce antibodies that block immune evasion domains.


Assuntos
Anticorpos Antivirais/sangue , Complemento C3b/imunologia , Evasão da Resposta Imune , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Feminino , Cobaias , Herpes Genital/prevenção & controle , Herpesvirus Humano 2 , Humanos , Imunização , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem
18.
PLoS Pathog ; 14(5): e1007095, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29791513

RESUMO

Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to evaluate in future Phase I/II prophylactic human vaccine trials that contain gD2 antigen.


Assuntos
Anticorpos Antivirais/imunologia , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/imunologia , Simplexvirus/imunologia , Proteínas do Envelope Viral/imunologia , Internalização do Vírus , Animais , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Epitopos/imunologia , Feminino , Cobaias , Imunização Passiva , Imunoglobulina G/sangue , Imunoglobulina G/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Células Vero
19.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187538

RESUMO

UL20, an essential herpes simplex virus 1 (HSV-1) protein, is involved in cytoplasmic envelopment of virions and virus egress. We reported recently that UL20 can bind to a host protein encoded by the zinc finger DHHC-type containing 3 (ZDHHC3) gene (also known as Golgi-specific DHHC zinc finger protein [GODZ]). Here, we show for the first time that HSV-1 replication is compromised in murine embryonic fibroblasts (MEFs) isolated from GODZ-/- mice. The absence of GODZ resulted in blocking palmitoylation of UL20 and altered localization and expression of UL20 and glycoprotein K (gK); the expression of gB and gC; and the localization and expression of tegument and capsid proteins within HSV-1-infected MEFs. Electron microscopy revealed that the absence of GODZ limited the maturation of virions at multiple steps and affected the localization of virus and endoplasmic reticulum morphology. Virus replication in the eyes of ocularly HSV-1-infected GODZ-/- mice was significantly lower than in HSV-1-infected wild-type (WT) mice. The levels of UL20, gK, and gB transcripts in the corneas of HSV-1-infected GODZ-/- mice on day 5 postinfection were markedly lower than in WT mice, whereas only UL20 transcripts were reduced in trigeminal ganglia (TG). In addition, HSV-1-infected GODZ-/- mice showed notably lower levels of corneal scarring, and HSV-1 latency reactivation was also reduced. Thus, normal HSV-1 infectivity and viral pathogenesis are critically dependent on GODZ-mediated palmitoylation of viral UL20.IMPORTANCE HSV-1 infection is widespread. Ocular infection can cause corneal blindness; however, approximately 70 to 90% of American adults exposed to the virus show no clinical symptoms. In this study, we show for the first time that the absence of a zinc finger protein called GODZ affects primary and latent infection, as well as reactivation, in ocularly infected mice. The reduced virus infectivity is due to the absence of the GODZ interaction with HSV-1 UL20. These results strongly suggest that binding of UL20 to GODZ promotes virus infectivity in vitro and viral pathogenesis in vivo.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Latência Viral , Replicação Viral , Animais , Linhagem Celular , Córnea/virologia , Citoplasma/virologia , Feminino , Herpesvirus Humano 1/genética , Lipoilação , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Gânglio Trigeminal/virologia , Proteínas Virais/genética
20.
Hum Vaccin Immunother ; 13(12): 2785-2793, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28481687

RESUMO

An estimated 417 million people worldwide ages 15 to 49 are infected with herpes simplex virus type 2 (HSV-2), the most common cause of genital ulcer disease. Some individuals experience frequent recurrences of genital lesions, while others only have subclinical infection, yet all risk transmitting infection to their intimate partners. A vaccine was developed that prevents shingles, which is a recurrent infection caused by varicella-zoster virus (VZV), a closely related member of the Herpesviridae family. The success of the VZV vaccine has stimulated renewed interest in a therapeutic vaccine for genital herpes. We have been evaluating a trivalent subunit antigen vaccine for prevention of genital herpes. Here, we assess the trivalent vaccine as immunotherapy in guinea pigs that were previously infected intravaginally with HSV-2. The trivalent vaccine contains HSV-2 glycoproteins C, D, and E (gC2, gD2, gE2) subunit antigens administered with CpG and alum as adjuvants. We previously demonstrated that antibodies to gD2 neutralize the virus while antibodies to gC2 and gE2 block their immune evasion activities, including evading complement attack and inhibiting activities mediated by the IgG Fc domain, respectively. Here, we demonstrate that the trivalent vaccine significantly boosts ELISA titers and neutralizing antibody titers. The trivalent vaccine reduces the frequency of recurrent genital lesions and vaginal shedding of HSV-2 DNA by approximately 50% and almost totally eliminates vaginal shedding of replication-competent virus, suggesting that the trivalent vaccine is a worthy candidate for immunotherapy of genital herpes.


Assuntos
Antígenos Virais/administração & dosagem , Glicoproteínas/administração & dosagem , Herpes Genital/terapia , Vacinas contra Herpesvirus/administração & dosagem , Imunoterapia/métodos , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Cobaias , Oligodesoxirribonucleotídeos/administração & dosagem , Prevenção Secundária , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...