Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 56(7): 1817-1825, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248376

RESUMO

Critical combination of high diffraction efficiency and large diffraction angles can be delivered by resonance-domain diffractive optics with high aspect ratio and wavelength-scale grating periods. To advance from static to electrically tunable resonance-domain diffraction grating, we resorted to its replication onto 2-5 µm thick P(VDF-TrFE-CFE) electrostrictive ter-polymer membranes. Electromechanical and optical computer simulations provided higher than 90% diffraction efficiency, a large continuous deflection range exceeding 20°, and capabilities for adiabatic spatial modulation of the grating period and slant. A prototype of the tunable resonance-domain diffraction grating was fabricated in a soft-stamp thermal nanoimprinting process, characterized, optically tested, and provided experimental feasibility proof for the tunable sub-micron-period gratings on electrostrictive polymers.

2.
Appl Opt ; 55(30): 8606-8611, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27828143

RESUMO

Resonance-domain-transmission diffractive optics with grating periods comparable to those of the illumination wavelength offers large angles of light deflection and nearly 100% Bragg diffraction efficiency. Optical design preferences for nearly normal incidence can be met by proper choice for the slant of the diffraction grooves relative to the substrate. However, straightforward fabrication of the slanted submicron high-aspect-ratio grooves is challenging. In this paper, optical performance comparable to that of the slanted grooves was achieved by an alternative solution of bonding two half-height symmetrical gratings with a lateral shift and an optional small longitudinal spacing. Results of design, nanofabrication, and optical testing are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...