Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 11(1): 292-305, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22004524

RESUMO

Proteomic analysis of wound exudates represents a valuable tool to investigate tissue pathology and to assess the therapeutic success of various interventions. In this study, the ability of horse-derived IgG and F(ab')(2) antivenoms to neutralize local pathological effects induced by the venom of the snake Bothrops asper in mouse muscle was investigated by the proteomic analysis of exudates collected in the vicinity of affected tissue. In experiments involving the incubation of venom and antivenom prior to injection in mice, hemorrhagic activity was completely abolished and local muscle-damaging activity was significantly reduced by the antivenoms. In these conditions, the relative amounts of several intracellular and extracellular matrix proteins were reduced by the action of antivenoms, whereas the relative amounts of various plasma proteins were not modified. Because not all intracellular proteins were reduced, it is likely that there is a residual cytotoxicity not neutralized by antivenoms. In experiments designed to more closely reproduce the actual circumstances of envenoming, that is, when antivenom is administered after envenomation, the number of proteins whose amounts in exudates were reduced by antivenoms decreased, underscoring the difficulty in neutralizing local pathology due to the very rapid onset of venom-induced pathology. In these experiments, IgG antivenom was more efficient than F(ab')(2) antivenom when administered after envenomation, probably as a consequence of differences in their pharmacokinetic profiles.


Assuntos
Antivenenos/farmacologia , Bothrops , Venenos de Crotalídeos/imunologia , Exsudatos e Transudatos/metabolismo , Fragmentos Fab das Imunoglobulinas/farmacologia , Proteoma/metabolismo , Animais , Antivenenos/uso terapêutico , Proteínas Sanguíneas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Cavalos , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Imunoglobulina G , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Proteômica
2.
Biochemistry ; 48(44): 10644-53, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19810706

RESUMO

Iron-sulfur clusters are key iron cofactors in biological pathways ranging from nitrogen fixation to respiration. Because of the toxicity of ferrous iron and sulfide to the cell, in vivo Fe-S cluster assembly transpires via multiprotein biosynthetic pathways. Fe-S cluster assembly proteins traffic iron and sulfide, assemble nascent Fe-S clusters, and correctly transfer Fe-S clusters to the appropriate target metalloproteins in vivo. The Gram-negative bacterium Escherichia coli contains a stress-responsive Fe-S cluster assembly system, the SufABCDSE pathway, that functions under iron starvation and oxidative stress conditions that compromise Fe-S homeostasis. Using a combination of protein-protein interaction and in vitro Fe-S cluster assembly assays, we have characterized the relative roles of the SufBCD complex and the SufA protein during Suf Fe-S cluster biosynthesis. These studies reveal that SufA interacts with SufBCD to accept Fe-S clusters formed de novo on the SufBCD complex. Our results represent the first biochemical evidence that the SufBCD complex within the Suf pathway functions as a novel Fe-S scaffold system to assemble nascent clusters and transfer them to the SufA Fe-S shuttle.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sequência de Bases , Dicroísmo Circular , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Homeostase , Proteínas Ferro-Enxofre/química , Espectrofotometria Ultravioleta
3.
Microbiol Mol Biol Rev ; 72(1): 110-25, table of contents, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18322036

RESUMO

Iron-sulfur (Fe-S) clusters are required for critical biochemical pathways, including respiration, photosynthesis, and nitrogen fixation. Assembly of these iron cofactors is a carefully controlled process in cells to avoid toxicity from free iron and sulfide. Multiple Fe-S cluster assembly pathways are present in bacteria to carry out basal cluster assembly, stress-responsive cluster assembly, and enzyme-specific cluster assembly. Although biochemical and genetic characterization is providing a partial picture of in vivo Fe-S cluster assembly, a number of mechanistic questions remain unanswered. Furthermore, new factors involved in Fe-S cluster assembly and repair have recently been identified and are expanding the complexity of current models. Here we attempt to summarize recent advances and to highlight new avenues of research in the field of Fe-S cluster assembly.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Transdução de Sinais
4.
J Biol Chem ; 282(18): 13342-50, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17350958

RESUMO

Iron-sulfur (Fe-S) clusters are key metal cofactors of metabolic, regulatory, and stress response proteins in most organisms. The unique properties of these clusters make them susceptible to disruption by iron starvation or oxidative stress. Both iron and sulfur can be perturbed under stress conditions, leading to Fe-S cluster defects. Bacteria and higher plants contain a specialized system for Fe-S cluster biosynthesis under stress, namely the Suf pathway. In Escherichia coli the Suf pathway consists of six proteins with functions that are only partially characterized. Here we describe how the SufS and SufE proteins interact with the SufBCD protein complex to facilitate sulfur liberation from cysteine and donation for Fe-S cluster assembly. It was previously shown that the cysteine desulfurase SufS donates sulfur to the sulfur transfer protein SufE. We have found here that SufE in turn interacts with the SufB protein for sulfur transfer to that protein. The interaction occurs only if SufC is present. Furthermore, SufB can act as a site for Fe-S cluster assembly in the Suf system. This provides the first evidence of a novel site for Fe-S cluster assembly in the SufBCD complex.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ferro/metabolismo , Liases/metabolismo , Enxofre/metabolismo , Transporte Biológico Ativo/fisiologia , Proteínas de Transporte/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Liases/genética , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...