Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(12): 6671-6681, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926855

RESUMO

Silica surface functionalization is often done through the condensation of functional silanes on silanols, silica surfaces' terminal groups. APTES, aminopropyltriethoxysilane, is widely used due to its assumed high reactivity with silanols, kinetically promoted by the catalytic action of the terminal amine function. Here, we revisit, based on a quantitative analysis by solid-state 29Si NMR, the assembly of this silane on silica surfaces to investigate whether its presence results from grafting, i.e., hetero-condensation with silanol groups or from homo-condensation of silane molecules in solution leading to polycondensates physisorbed on silica. We investigate the interaction of APTES with a crystalline layered silicate, ilerite, and with amorphous nonporous silica. We also studied a second silane, cyanopropyltrichlorosilane (CPTCS), terminated with a nitrile group. Our results undoubtedly prove that while CPTCS is grafted on the silica surface, the presence of APTES on silica and silicate materials is only marginally associated with silanol consumption. The analysis of the signal related to silicon atoms from silanes (Tn species) and those from silica (Qn species) allowed for the accurate estimation of the extent of homo-condensation vs grafting based on the ratio of T-O-T/Q-O-T siloxane bridges. These findings deeply question the well-established certainties on APTES assembly on silica that should no longer be seen as grafting of alkoxysilane by hetero-condensation with silanol groups but more accurately as a homo-condensed network of silanes, predominantly physisorbed on the surface but including some sparse anchoring points to the surface involving less than 6% of the overall silanol groups.

2.
Angew Chem Int Ed Engl ; 59(52): 23892-23898, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32964645

RESUMO

The syntheses of the novel silicon-bridged tris(tetraorganotin) compounds MeSi(CH2 SnPh2 R)3 (2, R=Ph; 5, R=Me3 SiCH2 ) and their halogen-substituted derivatives MeSi(CH2 SnPh(3-n) In )3 (3, n=1; 4, n=2) and MeSi(CH2 SnI2 R)3 (6, R=Me3 SiCH2 ) are reported. The reaction of compound 4 with di-t-butyltin oxide (t-Bu2 SnO)3 gives the oktokaideka-nuclear (18-nuclear) molecular diorganotin oxide [MeSi(CH2 SnPhO)3 ]6 (7) while the reaction of 6 with sodium hydroxide, NaOH, provides the trikonta-nuclear (30-nuclear) molecular diorganotin oxide [MeSi(CH2 SnRO)3 ]10 (8, R=Me3 SiCH2 ). Both 7 and 8 show belt-like ladder-type macrocyclic structures and are by far the biggest molecular diorganotin oxides reported to date. The compounds have been characterized by elemental analyses, electrospray mass spectrometry (ESI-MS), NMR spectroscopy, 1 H DOSY NMR spectroscopy (7), IR spectroscopy (7, 8), and single-crystal X-ray diffraction analysis (2, 7, 8).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...