Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892079

RESUMO

Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.


Assuntos
Cannabis , Fungicidas Industriais , Microbiota , Rizosfera , Microbiologia do Solo , Cannabis/enzimologia , Microbiota/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Canabinoides/farmacologia , Canabinoides/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/enzimologia , RNA Ribossômico 16S/genética
2.
Parasit Vectors ; 16(1): 261, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537675

RESUMO

Quercetin (QUE) is a natural polyphenol known to have numerous pharmacological properties against infectious and non-infectious diseases. Azithromycin (AZ) is an antibiotic that belongs to the azalide class of antimicrobials and an antiparasitic that is known to be effective in combination with clindamycin against pyrimethamine/sulfadiazine-resistant Toxoplasma gondii tachyzoites in clinical settings. Both compounds are known to target protein synthesis and have anti-inflammatory properties. However, little is known about QUE and AZ synergistic interaction against T. gondii growth. Here, we report for the first time the effects of the combination of QUE and AZ on T. gondii growth. The 50% inhibitory concentration (IC50) for QUE at 72 h of interaction was determined to be 0.50 µM, whereas AZ gave an IC50 value of 0.66 µM at 72 h of interaction with parasites. Combination testing of QUE and AZ in a ratio of 2:1 (QUE:AZ) showed an IC50 value of 0.081 µM. Interestingly, a fractional inhibitory index value of 0.28 was observed, indicating a strong synergy. QUE was also found to upregulate the generation of reactive oxygen species and cause dysfunction of the mitochondria membrane of both intracellular and extracellular T. gondii tachyzoites. Overall, the results indicate that QUE is a novel lead capable of synergizing with AZ for inhibiting T. gondii growth and may merit future investigation in vivo for possible combination drug development.


Assuntos
Anti-Infecciosos , Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Azitromicina/farmacologia , Quercetina/farmacologia , Quercetina/metabolismo , Anti-Infecciosos/farmacologia , Proliferação de Células
3.
Arch Microbiol ; 205(1): 5, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441284

RESUMO

The relationship between human health and gut microbiota is becoming more apparent. It is now widely believed that healthy gut flora plays a vital role in the overall well-being of the individual. There are spatial and temporal variations in the distribution of microbes from the esophagus to the rectum throughout an individual's lifetime. Through the development of genome sequencing technologies, scientists have been able to study the interactions between different microorganisms and their hosts to improve the health and disease of individuals. The normal gut microbiota provides various functions to the host, whereas the host, in turn, provides nutrients and promotes the development of healthy and resilient microbiota communities. Thus, the microbiota provides and maintains the gut's structural integrity and protects the gut against pathogens. The development of the normal gut microbiota is influenced by various factors. Some of these include the mode of delivery, diet, and antibiotics. In addition, the environment can also affect the development of the gut microbiota. For example, one of the main concerns of antibiotic use is the alteration of the gut microbiota, which could lead to the development of multidrug-resistant organisms. When microbes are disturbed, it can potentially lead to various diseases. Depending on the species' ability to adapt to the human body's environment, the fate of the microbes in the host and their relationship with the human body are decided. This review aims to provide a comprehensive analysis of microbe, microbes-host immune interactions, and factors that can disturb their interactions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Nutrientes , Antibacterianos , Mapeamento Cromossômico
4.
Arch Microbiol Immunol ; 6(1): 81-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996377

RESUMO

The prevalence of multidrug resistant bacterial diseases is a major global health risk. Multidrug resistant bacterial diseases are prevalent, and the need for novel methods of treatment is essential to the preservation of public health. Annually foodborne pathogens cause 1.35 million infections and 26,500 hospitalizations in the United States alone. Foodborne pathogens such as Salmonella spp. are a major threat to public health. Bacteriophages offer a unique method for the treatment of these multidrug resistant bacteria. We studied the infection dynamics of a potential mono-phage therapy of Salmonella typhimurium under various pathophysiological conditions. Furthermore, we determined the resistance dynamics of Salmonella typhimurium against P22 phage treatment. We also determined synergy with antibiotics such as ampicillin and kanamycin. This research helps to further define and show the versatility of bacteriophages as potential novel treatment methods.

5.
Front Cell Infect Microbiol ; 12: 852889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646733

RESUMO

Toxoplasma gondii is a zoonotic parasite that infects the brain of humans and causes cerebral toxoplasmosis. The recommended drugs for the treatment or prophylaxis of toxoplasmosis are pyrimethamine (PY) and sulfadiazine (SZ), which have serious side effects. Other drugs available for toxoplasmosis are poorly tolerated. Dihydroquinine (DHQ) is a compound closely related to quinine-based drugs that have been shown to inhibit Plasmodium falciparum and Plasmodium berghei in addition to its anti-arrhythmia properties. However, little is known about the effect of DHQ in T. gondii growth and its mechanism of action in vitro. In this study, we report the anti-Toxoplasma and anti-invasion properties of DHQ. DHQ significantly inhibited T. gondii tachyzoite growth with IC50s values of 0.63, 0.67, and 0.00137 µM at 24, 48, and 72 h, respectively. Under similar conditions, SZ and PY, considered as the gold standard drugs for the treatment of toxoplasmosis, had IC50s values of 1.29, 1.55, and 0.95 and 3.19, 3.52, and 2.42 µM, respectively. The rapid dose-dependent inhibition of T. gondii tachyzoites by DHQ compared to the standard drugs (SZ and PY) indicates that DHQ has high selective parasiticidal effects against tachyzoite proliferation. Remarkably, DHQ had an excellent selectivity index (SI) of 149- and 357-fold compared to 24- and 143-fold for PY and SZ, respectively, using fibroblast cells. In addition, DHQ disrupted T. gondii tachyzoite mitochondrial membrane potential and adenosine triphosphate (ATP) production and elicited high reactive oxygen species (ROS) generation. Taking all these findings together, DHQ promises to be an effective and safe lead for the treatment of toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose Cerebral , Antiparasitários/farmacologia , Humanos , Quinidina/análogos & derivados , Quinidina/farmacologia , Sulfadiazina/farmacologia
6.
Antibiotics (Basel) ; 11(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35625310

RESUMO

Salmonella typhimurium (S. typhimurium) is one of the major food and waterborne bacteria that causes several health outbreaks in the world. Although there are few antibiotics against this bacterium, some of these drugs are challenged with resistance and toxicity. To mitigate this challenge, our group explored the ethnomedicinal/herbalism knowledge about a certain spice used in Northern Ghana in West Africa against bacterial and viral infection. This plant is Capsicum chinense (C. chinense). The plant is one of the commonest food spices consumed across the world. The seed of the plant contains both capsaicin and dihydrocapsaicin. Apart from capsaicin and dihydrocapsaicin, other major capsaicinoids in C. chinense include nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicin. In this pilot work, we investigated the antibacterial activity of pure capsaicin and capsaicin extract obtained from C. chinense against S. typhimurium in vitro. Capsaicin extract showed potent inhibition of S. typhimurium growth at concentrations as low as 100 ng/mL, whereas pure capsaicin comparatively showed poorer inhibition of bacteria growth at such a concentration. Interestingly, both capsaicin extract and pure capsaicin were found to potently block a S. typhimurium invasion of the Vero cell in vitro. Taken together, we believed that capsaicin might work synergistically with dihydrocapsaicin or the other capsaicinoids to inhibit S. typhimurium growth, whereas individually, capsaicin or dihydrocapsaicin could potently block the bacteria entry and invasion of Vero cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...