Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299253

RESUMO

In this research, the fracture behavior of brittle specimens weakened by V-shaped notches with end holes (VO-notches) is studied. First, an experimental investigation is conducted to evaluate the effect of VO-notches on fracture behavior. To this end, VO-notched samples of PMMA are made and exposed to pure opening mode loading, pure tearing mode loading, and some combinations of these two loading types. As part of this study, samples with end-hole radii of 1, 2, and 4 mm are prepared to determine the effect of the notch end-hole size on the fracture resistance. Second, two well-known stress-based criteria, namely the maximum tangential stress (MTS) criterion and the mean stress (MS) criterion, are developed for VO-shaped notches subjected to mixed-mode I/III loading, also determining the associated fracture limit curves. A comparison between the theoretical and the experimental critical conditions indicates that the resulting VO-MTS and VO-MS criteria predict the fracture resistance of VO-notched samples with about 92% and 90% accuracy, respectively, confirming their capacity to estimate fracture conditions.

2.
Materials (Basel) ; 15(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629688

RESUMO

Spruce wood (Picea Mariana) is a highly orthotropic material whose fracture behavior in the presence of U-shaped notches and under combined tensile-tearing loading (so-called mixed-mode I/III loading) is analyzed in this work. Thus, several tests are carried out on U-notched samples with different notch tip radii (1 mm, 2 mm, and 4 mm) under various combinations of loading modes I and III (pure mode I, pure mode III, and three mixed-mode I/III loadings), from which both the experimental fracture loads and the fracture angles of the specimens are obtained. Because of the linear elastic behavior of the spruce wood, the point stress (PS) and mean stress (MS) methods, both being stress-based criteria, are used in combination with the Virtual Isotropic Material Concept (VIMC) for predicting the fracture loads and the fracture angles. By employing the VIMC, the spruce wood as an orthotropic material is modeled as a homogeneous and isotropic material with linear elastic behavior. The stress components required for calculating the experimental values of notch stress intensity factors are obtained by finite element (FE) analyses of the test configuration using commercial FE software from the fracture loads obtained experimentally. The discrepancies between the experimental and theoretical results of the critical notch stress intensity factors are obtained between -12.1% and -15% for the PS criterion and between -5.9% and -14.6% for the MS criterion, respectively. The discrepancies related to fracture initiation angle range from -1.0% to +12.1% for the PS criterion and from +1.5% to +12.2% for the MS criterion, respectively. Thus, both the PS and MS models have good accuracy when compared with the experimental data. It is also found that both failure criteria underestimate the fracture resistance of spruce wood under mixed-mode I/III loading.

3.
Polymers (Basel) ; 13(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503055

RESUMO

This paper gathers experimental and theoretical investigations about both the geometry-dependent fracture initiation angle and the fracture strength in VO-notched polymethyl methacrylate (PMMA) specimens under mode I loading conditions. The numerical analyses revealed that despite the application of pure mode I loading on the geometrically symmetric VO-notched samples, the maximum tangential stress occurs at two points symmetrically placed on either side of the notch bisector line. The experimental tests performed on some specimens showed that a crack does not necessarily propagate along the notch bisector line. Stress-based theoretical studies were then carried out to justify the experimental findings. The conventional maximum tangential stress (MTS) criterion gave weak predictions of the fracture. Therefore, the predictions were checked with the generalized MTS (GMTS) criterion by taking into consideration the higher-order stress terms. It was demonstrated that the GMTS criterion predictions have satisfactory consistency with the experimental results of the crack initiation angle and the fracture strength.

4.
Polymers (Basel) ; 13(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801749

RESUMO

This paper attempts to validate the application of the Virtual Isotropic Material Concept (VIMC) in combination with the average strain energy density (ASED) criterion to predict the critical load in notched laminated composites. This methodology was applied to E/glass-epoxy-laminated composites containing U-notches. For this purpose, a series of fracture test data recently published in the literature on specimens with different notch tip radii, lay-up configurations, and a number of plies were employed. It was shown that the VIMC-ASED combined approach provided satisfactory predictions of the last-ply failure (LPF) loads (i.e., critical loads).

5.
Polymers (Basel) ; 12(1)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936184

RESUMO

Composite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP) composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina strength limit representing the damage initiation phenomena, while yielding of MD composites in structural applications are not quantified due to the complexity of the sequence of damage evolutions in different laminas dependent on their angle and specification. This paper proposes a new method to identify the yield point of MD composite structures based on the evolution of the damage dissipation energy (DDE). Such a characteristic evolution curve is computed using a validated finite element model with a mesoscale damage-based constitutive model that accounts for different matrix and fiber failure modes in angle lamina. The yield point of composite structures is identified to correspond to a 5% increase in the initial slope of the DDE evolution curve. The yield points of three antisymmetric MD FRP composite structures under flexural loading conditions are established based on Hashin unidirectional (UD) criteria and the energy-based criterion. It is shown that the new energy concept provides a significantly larger safe limit of yield for MD composite structures compared to UD criteria, in which the accumulation of energy dissipated due to all damage modes is less than 5% of the fracture energy required for the structural rupture.

6.
Polymers (Basel) ; 11(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569609

RESUMO

Despite wide industrial applications of Bis-GMA polymer, very few studies are available about the material classification, mechanical properties, and behavior of this material. In this study, the compressive behavior of Bis-GMA polymer was studied using different hyperelastic constitutive models through a hybrid experimental-computational process. Standard uniaxial compression tests were conducted to extract the mechanical behavior and structural response of the Bis-GMA polymer. A nano-indentation experiment was used to verify the compressive behavior of Bis-GMA polymer in the form of hyperelastic behavior. The finite element model and real-time simulation of the test incorporating different hyperelastic models were developed in comparison with the experimental finding to obtain the proper type of hyperelastic behavior of Bis-GMA polymer. The results indicate that a second-order polynomial hyperelastic model is the best fit to predict the behavior of Bis-GMA polymer. Next, the validated model was used to determine the true stress-strain curve of the Bis-GMA polymer.

7.
Biomed Mater Eng ; 28(5): 463-476, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854490

RESUMO

BACKGROUND: Stenting has been proposed as an effective treatment to restore blood flow in obstructed arteries by plaques. Although several modified designs for stents have been suggested, most designs have the risk of disturbing blood flow. OBJECTIVE: The main objective is to propose a stent design to attain a uniform lumen section after stent deployment. METHODS: Mechanical response of five different designs of J & J Palmaz-Schatz stent with the presence of plaque and artery are investigated; four stents have variable strut thickness of different magnitudes and the rest one is a uniform-strut-thickness stent. Nonlinear finite element is employed to simulate the expansion procedure of the intended designs using ABAQUS explicit. RESULTS: The stent design whose first cell thickness linearly increases by 35 percent, exhibits the best performance, that is it has the lowest recoiling and stress induced in the intima for a given lumen gain. It also enjoys the minimal discrepancy between the final at the distal and proximal ends. CONCLUSIONS: A uniform widened artery can be achieved by using the stent design with 35 percent increase in its first cell, which provides the possibility to prevent from disturbing blood flow and consequently post-operation complications.


Assuntos
Teste de Materiais , Desenho de Prótese , Stents , Análise de Elementos Finitos , Humanos , Placa Aterosclerótica
8.
Iran Endod J ; 5(1): 11-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-23130023

RESUMO

INTRODUCTION: Many studies have been performed to evaluate the stress distribution around endodontic posts; those which compared posts composed of different materials are rare. The aim of this study was to compare stresses induced in dentin by three structurally different posts using photoelasticity method. MATERIALS AND METHODS: Nine blocks of PSM-5 Photoelastic material with 45×45×10 mm dimension were prepared. In each block, a canal 9 mm in length and 0.8 mm in width was drilled. Blocks were divided into 3 groups of three each. In the first group, the canals were prepared for insertion of Fiber Post with 1.25 mm width. In the second group, the canals were prepared for insertion of ParaPost with 1.25 mm width and the canals in the third group were prepared for casting post similar to the above samples. Casting Post pattern was made by Duralay resin and casted by Ni-Cr alloy. All posts were cemented in canals with Panavia cement. The stresses were evaluated in the polariscope under three different conditions: 1) without load, 2) with 135 N vertical load, and 3) with 90 N oblique load (26° inclination to post long axis). The fringe orders in the cervical, middle and apical regions of the posts were evaluated and compared with each other. RESULTS: Application of the vertical load induced a high stress concentration (FO=4) in the apical region of the ParaPost, while lower stress was observed in the middle (FO=2) and cervical region (FO=2+). Fiber Post and Casting Post showed even stress distribution (FO=2+). High stress concentration was detected with the application of oblique force in the cervical region of ParaPost (FO=5) and Casting Post (FO=3+). Fiber Posts fractured before reaching 90-N loading force. CONCLUSION: The stress distribution around Fiber Post and Casting Post were constant in comparison with ParaPost. Fiber Post with 1.25 mm width was not recommended in situations with high oblique stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...