Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(2): 317-335, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37519014

RESUMO

High-throughput drug screening enables the discovery of new anticancer drugs. Although monolayer cell cultures are commonly used for screening, their limited complexity and translational efficiency require alternative models. Three-dimensional cell cultures, such as multicellular tumor spheroids (MCTS), mimic tumor architecture and offer promising opportunities for drug discovery. In this study, we developed a neuroblastoma MCTS model for high-content drug screening. We also aimed to decipher the mechanisms underlying synergistic drug combinations in this disease model. Several agents from different therapeutic categories and with different mechanisms of action were tested alone or in combination with selective inhibition of prostaglandin E2 by pharmacological inhibition of microsomal prostaglandin E synthase-1 (mPGES-1). After a systematic investigation of the sensitivity of individual agents and the effects of pairwise combinations, GFP-transfected MCTS were used in a confirmatory screen to validate the hits. Finally, inhibitory effects on multidrug resistance proteins were examined. In summary, we demonstrate how MCTS-based high-throughput drug screening has the potential to uncover effective drug combinations and provide insights into the mechanism of synergy between an mPGES-1 inhibitor and chemotherapeutic agents.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neuroblastoma , Humanos , Prostaglandina-E Sintases , Esferoides Celulares , Neuroblastoma/tratamento farmacológico , Descoberta de Drogas/métodos
2.
Dev Comp Immunol ; 148: 104920, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597699

RESUMO

Granzymes A and K are two highly homologous serine proteases expressed by mammalian cytotoxic T cells (CTLs) and natural killer (NK) cells. The locus encoding these two proteases is the first of the hematopoietic serine protease loci to appear during vertebrate evolution. This locus is found in all jawed vertebrates including the cartilaginous fishes. Granzyme A is the most abundant of the different granzymes expressed by CTLs and NK cells and its potential function has been studied extensively for many years. However, no clear conclusions concerning its primary role in the immune defense has been obtained. In all mammals, there are only one copy each of granzyme A and K, whereas additional copies are found in both cartilaginous and ray finned fishes. In cichlids two of these copies seem to encode new members of the granzyme A/K family. These two new members appear to have changed primary specificity and to be pure chymases based on the amino acids in their active site substrate binding pockets. Interestingly, one of these gene copies is located in the middle of the granzyme A/K locus, while the other copy is present in another locus, the met-ase locus. We here present a detailed characterization of the extended cleavage specificity of one of these non-classical granzymes, a Zebra mbuna granzyme positioned in the granzyme A/K locus. This enzyme, named granzyme A2, showed a high preference for tyrosine in the P1 position of substrates, thereby being a strict chymase. We have also characterized one of the classical granzyme A/Ks of the Zebra mbuna, granzyme A1, which is a tryptase with preference for arginine in the P1 position of substrates. Based on their extended specificities, the two granzymes showed major similarities, but also some differences in preferred amino acids in positions surrounding the cleavable amino acid. Fish lack one of the hematopoietic serine protease loci of mammals, the chymase locus, where one of the major mast cell enzymes is located. An interesting question is now if cichlids have by compensatory mechanisms generated a mast cell chymase from another locus, and if similar chymotryptic enzymes have appeared also in other fish species.


Assuntos
Ciclídeos , Serina Proteases , Animais , Triptases , Granzimas/genética , Quimases/genética , Aminoácidos , Ciclídeos/genética , Mamíferos
3.
Front Immunol ; 14: 1211295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497217

RESUMO

Granzymes A and K are two highly homologous serine proteases expressed by mammalian cytotoxic T cells (CTL) and natural killer cells (NK). Granzyme A is the most abundant of the different granzymes (gzms) expressed by these two cell types. Gzms A and K are found in all jawed vertebrates and are the most well conserved of all hematopoietic serine proteases. Their potential functions have been studied extensively for many years, however, without clear conclusions. Gzm A was for many years thought to serve as a key component in the defense against viral infection by the induction of apoptosis in virus-infected cells, similar to gzm B. However, later studies have questioned this role and instead indicated that gzm A may act as a potent inducer of inflammatory cytokines and chemokines. Gzms A and K form clearly separate branches in a phylogenetic tree indicating separate functions. Transcriptional analyses presented here demonstrate the presence of gzm A and K transcripts in both CD4+ and CD8+ T cells. To enable screening for their primary biological targets we have made a detailed analysis of their extended cleavage specificities. Phage display analysis of the cleavage specificity of the recombinant enzymes showed that both gzms A and K are strict tryptases with high selectivity for Arg over Lys in the P1 position. The major differences in the specificities of these two enzymes are located N-terminally of the cleavage site, where gzm A prefers small amino acids such as Gly in the P3 position and shows a relatively relaxed selectivity in the P2 position. In contrast, gzm K prefers large amino acids such as Phe, Tyr, and Trp in both the P2 and P3 positions and does not tolerate negatively charged residues in the P2 position. This major distinction in extended specificities is likely reflected also in preferred in vivo targets of these two enzymes. This information can now be utilized for high-precision screening of primary targets for gzms A and K in search of their highly conserved but still poorly defined functions in vertebrate immunity.


Assuntos
Linfócitos T CD8-Positivos , Células Matadoras Naturais , Animais , Humanos , Granzimas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Filogenia , Serina Proteases , Imunidade Celular , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...