Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(29): 10048-10055, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34251790

RESUMO

Biomedical diagnostics based on microfluidic devices have the potential to significantly benefit human health; however, the manufacturing of microfluidic devices is a key limitation to their widespread adoption. Outbreaks of infectious disease continue to demonstrate the need for simple, sensitive, and translatable tests for point-of-care use. Additive manufacturing (AM) is an attractive alternative to conventional approaches for microfluidic device manufacturing based on injection molding; however, there is a need for development and validation of new AM process capabilities and materials that are compatible with microfluidic diagnostics. In this paper, we demonstrate the development and characterization of AM cartridges using continuous liquid interface production (CLIP) and investigate process characteristics and capabilities of the AM microfluidic device manufacturing. We find that CLIP accurately produces microfluidic channels as small as 400 µm and that it is possible to routinely produce fluid channels as small as 100 µm with high repeatability. We also developed a loop-mediated isothermal amplification (LAMP) assay for detection of E. coli from whole blood directly on the CLIP-based AM microfluidic cartridges, with a 50 cfu/µL limit of detection, validating the use of CLIP processes and materials for pathogen detection. The portable diagnostic platform presented in this paper could be used to investigate and validate other AM processes for microfluidic diagnostics and could be an important component of scaling up the diagnostics for current and future infectious diseases and pandemics.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Escherichia coli/genética , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico
2.
Proc Natl Acad Sci U S A ; 117(37): 22727-22735, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868442

RESUMO

The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per µL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.


Assuntos
Infecções por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Pneumonia Viral/diagnóstico , Testes Imediatos/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Humanos , Limite de Detecção , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/normas , Mucosa Nasal/virologia , Pandemias , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/instrumentação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , SARS-CoV-2 , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...