Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 32(3): 541-552, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33621057

RESUMO

Cells are powerful carriers that can help to improve the delivery of nanomedicines. One approach to use cells as carriers is to immobilize the nanoparticulate cargo on the cell surface. While a plethora of chemical conjugation strategies are available to bind nanoparticles to cell surfaces, only relatively little is known about the effects of particle size and cell type on the surface immobilization of nanoparticles. This study investigates the biotin-NeutrAvidin mediated immobilization of model polymer nanoparticles with sizes ranging from 40 nm to 1 µm on two different T cell lines, viz., human Jurkat cells as well as mouse SJL/PLP7 T cells, which are of potential interest for drug delivery across the blood-brain barrier. The nanoparticle cell surface immobilization and the particle surface concentration and distribution were analyzed by flow cytometry and confocal microscopy. The functional properties of nanoparticle-modified SJL/PLP7 T cells were assessed in an ICAM-1 binding assay as well as in a two-chamber setup in which the migration of the particle-modified T cells across an in vitro model of the blood-brain barrier was studied. The results of these experiments highlight the effects of particle size and cell line on the surface immobilization of nanoparticles on living cells.


Assuntos
Avidina/química , Biotina/química , Nanopartículas/química , Polímeros/química , Linfócitos T/química , Animais , Barreira Hematoencefálica , Humanos , Camundongos
2.
Adv Healthc Mater ; 10(2): e2001375, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241667

RESUMO

Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof-of-concept that demonstrates the feasibility of activated effector/memory CD4+ helper T cells (CD4+ TEM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4+ TEM cells can be decorated with poly(ethylene glycol)-modified polystyrene nanoparticles using thiol-maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4+ TEM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle-modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts.


Assuntos
Barreira Hematoencefálica , Nanopartículas , Animais , Transporte Biológico , Sistemas de Liberação de Medicamentos , Camundongos , Polímeros , Linfócitos T
3.
J Control Release ; 259: 92-104, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28189629

RESUMO

Cell mediated delivery of synthetic nano- and microparticle based drug carriers is a very promising strategy to enhance control over the distribution of drugs and improve targeting. This article will present an overview of work, which has been done to explore cell surface modification strategies for the cellular hitchhiking of synthetic nano- and microparticles. The first part of this article will present and discuss the different types of cells that have been explored for cell mediated drug delivery. The second part of this review will discuss the various chemical strategies that have been elaborated for the conjugation or immobilization of nano- and microparticles on the surface of these cells.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Animais , Eritrócitos , Humanos , Leucócitos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...