Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Rev Sci Instrum ; 93(11): 113520, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461491

RESUMO

The Imaging Spectroscopy Snout (ISS) used at the National Ignition Facility is able to simultaneously collect neutron pinhole images, 1D spatially resolved x-ray spectra, and time resolved x-ray pinhole images. To measure the x-ray spectra, the ISS can be equipped with up to four different transmission crystals, each offering different energy ranges from ∼7.5 to ∼12 keV and different resolutions. Characterizing and calibrating such instruments is of paramount importance in order to extract meaningful results from experiments. More specifically, we characterized different ISS transmission-type alpha-Quartz crystals by measuring their responses as a function of photon energy, from which we inferred the angle-integrated reflectivity for each crystal's working reflections. These measurements were made at the Lawrence Livermore National Laboratory calibration station dedicated to the characterization of x-ray spectrometers. The sources used covered a wide x-ray range-from a few to 30 keV; the source diameter was ∼0.6 mm. The experimental results are discussed alongside theoretical calculations using the pyTTE model.

2.
Rev Sci Instrum ; 93(11): 113502, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461505

RESUMO

During inertial confinement fusion experiments at the National Ignition Facility (NIF), a capsule filled with deuterium and tritium (DT) gas, surrounded by a DT ice layer and a high-density carbon ablator, is driven to the temperature and densities required to initiate fusion. In the indirect method, 2 MJ of NIF laser light heats the inside of a gold hohlraum to a radiation temperature of 300 eV; thermal x rays from the hohlraum interior couple to the capsule and create a central hotspot at tens of millions degrees Kelvin and a density of 100-200 g/cm3. During the laser interaction with the gold wall, m-band x rays are produced at ∼2.5 keV; these can penetrate into the capsule and preheat the ablator and DT fuel. Preheat can impact instability growth rates in the ablation front and at the fuel-ablator interface. Monitoring the hohlraum x-ray spectrum throughout the implosion is, therefore, critical; for this purpose, a Multilayer Mirror (MLM) with flat response in the 2-4 keV range has been installed in the NIF 37° Dante calorimeter. Precision engineering and x-ray calibration of components mean the channel will report 2-4 keV spectral power with an uncertainty of ±8.7%.

3.
Rev Sci Instrum ; 93(10): 103501, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319319

RESUMO

When compared with the National Ignition Facility's (NIF) original soft x-ray opacity spectrometer, which used a convex cylindrical design, an elliptically shaped design has helped to increase the signal-to-noise ratio and eliminated nearly all reflections from alternate crystal planes. The success of the elliptical geometry in the opacity experiments has driven a new elliptical geometry crystal with a spectral range covering 520-1100 eV. When coupled with the primary elliptical geometry, which spans 1000-2100 eV, the new sub-keV elliptical geometry helps to cover the full iron L-shell and major oxygen transitions important to solar opacity experimentation. The new design has been built and tested by using a Henke x-ray source and shows the desired spectral coverage. Additional plans are underway to expand these opacity measurements into a mode of time-resolved detection, ∼1 ns gated, but considerations for the detector size and photometrics mean a crystal geometry redesign. The new low-energy geometry, including preliminary results from the NIF opacity experiments, is presented along with the expansion plans into a time-resolved platform.

4.
Rev Sci Instrum ; 92(5): 053102, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243250

RESUMO

We report the development of a high-resolution spectrometer for extended x-ray absorption fine structure (EXAFS) studies of materials under extreme conditions. A curved crystal and detector in the spectrometer are replaceable such that a single body is employed to perform EXAFS measurements at different x-ray energy intervals of interest. Two configurations have been implemented using toroidal crystals with Ge 311 reflection set to provide EXAFS at the Cu K-edge (energy range 8.9-9.8 keV) and Ge 400 reflection set to provide EXAFS at the Ta L3-edge (9.8-10.7 keV). Key performance characteristics of the spectrometer were found to be consistent with design parameters. The data generated at the National Ignition Facility have shown an ≃3 eV spectral resolution for the Cu K-edge configuration and ≃6 eV for the Ta L3-edge configuration.

5.
Rev Sci Instrum ; 92(5): 053511, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243355

RESUMO

Being able to provide high-resolution x-ray radiography is crucial in order to study hydrodynamic instabilities in the high-energy density regime at the National Ignition Facility (NIF). Current capabilities limit us to about 20 µm resolution using pinholes, but recent studies have demonstrated the high-resolution capability of the Fresnel zone plate optics at the NIF, measuring 2.3 µm resolution. Using a zinc Heα line at 9 keV as a backlighter, we obtained a radiograph of Rayleigh-Taylor instabilities with a measured resolution of under 3 µm. Two images were taken with a time integrated detector and were time gated by a laser pulse duration of 600 ps, and a third image was taken with a framing camera with a 100 ps time gate on the same shot and on the same line of sight. The limiting factors on image quality for these two cases are the motion blur and the signal to noise ratio, respectively. We also suggest solutions to increase the image quality.

6.
Rev Sci Instrum ; 92(3): 035108, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820075

RESUMO

The soft x-ray Opacity Spectrometer (OpSpec) used on the National Ignition Facility (NIF) has recently incorporated an elliptically shaped crystal. The original OpSpec used two convex cylindrical crystals for time-integrated measurements of point-projection spectra from 540 to 2100 eV. However, with the convex geometry, the low-energy portion of the spectrum suffered from high backgrounds due to scattered x-rays as well as reflections from alternate crystal planes. An elliptically shaped crystal allows an acceptance aperture at the crossover focus between the crystal and the detector, which reduces background and eliminates nearly all reflections from alternate crystal planes. The current elliptical design is an improvement from the convex cylindrical design but has a usable energy range from 900 to 2100 eV. In addition, OpSpec is currently used on 18 NIF shots/year, in which both crystals are typically damaged beyond reuse, so efficient production of 36 crystals/year is required. Design efforts to improve the existing system focus on mounting reliability, reducing crystal strain to increase survivability between mounting and shot time, and extending the energy range of the instrument down to 520 eV. The elliptical design, results, and future options are presented.

7.
Environ Toxicol Chem ; 40(3): 811-819, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275288

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have emerged as contaminants of environmental concern following release from industrial practices and use of aqueous film-forming foam (AFFF). Of the identified PFAS in surface water samples from known AFFF release sites, perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) are frequently detected. The focus of the present study was to determine the effects of PFOS and PFHxS to the native (and common) fathead minnow, Pimephales promelas, over critical life stages of reproduction and development. Two separate, 42-d experiments were carried out using sexually mature fish, exposed to either PFOS or PFHxS. Measured exposure concentrations for PFOS and PFHxS were 0, 44, 88, 140, and 231 µg/L and 0, 150, 300, 600, and 1200 µg/L, respectively. At day 21 of the adult exposure, eggs were collected and reared for 21 d to determine the effects of PFOS or PFHxS on development, growth, and survival of larvae. The no-observable-effect concentration (NOEC) for PFOS was 44 µg/L, and the lowest-observable-effect concentration was 88 µg/L based on reduced growth in juvenile (F1) fish. Effects from PFOS exposures that did not follow a standard dose-response curve were reduced gonadosomatic index in adult males (at 44 µg/L) and reduced fecundity in females (at 140 µg/L). There was no toxicity on apical endpoints to report on adult or juvenile fish exposed to PFHxS up to 1200 µg/L. Importantly, we note that both PFOS and PFHxS accumulated in gonads and liver of adult fish following the respective exposures. The present study supports previous literature on PFOS toxicity and accumulation in fathead minnows but resulted in a lower NOEC than previously established for this species. Environ Toxicol Chem 2021;40:811-819. © 2020 SETAC.


Assuntos
Cyprinidae , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos , Animais , Feminino , Fluorocarbonos/toxicidade , Masculino , Reprodução , Ácidos Sulfônicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Rev Sci Instrum ; 89(10): 10G114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399807

RESUMO

The need for a time-resolved monochromatic x-ray imaging diagnostic at photon energies >15 keV has motivated the development of a Wolter optic to study x-ray sources on the Z-machine at Sandia National Laboratories. The work is performed in both the LLNL's x-ray calibration facility and SNL's micro-focus x-ray lab. Characterizations and calibrations include alignment, measurement of throughput within the field of view (FOV), the point-spread function within the FOV both in and out of focus, and bandpass in the FOV. These results are compared with ray tracing models, showing reasonable agreement.

9.
Rev Sci Instrum ; 89(10): 10G113, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399826

RESUMO

Recent breakthroughs in the fabrication of small-radii Wolter optics for astrophysics allow high energy density facilities to consider such optics as novel x-ray diagnostics at photon energies of 15-50 keV. Recently, the Lawrence Livermore National Laboratory, Sandia National Laboratories (SNL), the Smithsonian Astrophysical Observatory, and the NASA Marshall Space Flight Center jointly developed and fabricated the first custom Wolter microscope for implementation in SNL's Z machine with optimized sensitivity at 17.5 keV. To achieve spatial resolution of order 100-200 microns over a field of view of 5 × 5 × 5 mm3 with high throughput and narrow energy bandpass, the geometry of the optic and its multilayer required careful design and optimization. While the geometry mainly influences resolution and the field of view of the diagnostic, the mirror coating determines the spectral response and throughput. Here we outline the details of the design and fabrication process for the first multilayer-coated Wolter I optic for SNL's Z machine (Z Wolter), including its W/Si multilayer, and present results of raytrace simulations completed to predict and verify the performance of the optic.

10.
Rev Sci Instrum ; 89(10): 10F125, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399848

RESUMO

A high resolution, Diagnostic Instrument Manipulator (DIM)-based x-ray Bragg crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions in ignition capsules near stagnation times. The spectrometer has two conical crystals in the Hall geometry focusing rays from the Kr Heα, Lyα, and Heß complexes onto a streak camera, with the physics objectives of measuring time-resolved electron density and temperature through observing Stark broadening and the relative intensities of dielectronic satellites. A third von Hámos crystal that time-integrates the Kr Heα, Heß and intervening energy range provides in situ calibration for the streak camera signals. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and multiple K- and L-absorption edge filters at the Princeton Plasma Physics Laboratory (PPPL) x-ray laboratory. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal are discussed. These calibration data provide absolute x-ray signal levels for NIF measurements, enabling precise filter selection and comparisons to simulations.

11.
Rev Sci Instrum ; 89(10): 10G112, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399878

RESUMO

A facility to calibrate x-ray imaging optics was built at Lawrence Livermore National Laboratory to support high energy density (HED) and inertial confinement fusion (ICF) diagnostics such as those at the National Ignition Facility and the Sandia Z-Machine. Calibration of the spectral reflectivity and resolution of these x-ray diagnostics enable absolute determination of the x-ray flux and wavelengths generated in the HED and ICF experiments. Measurement of the optic point spread function is used to determine spatial resolution of the optic. This facility was constructed to measure (1) the x-ray reflectivity to ±5% over a spectral range from 5 to 60 keV; (2) point spread functions with a resolution of 50 µm (currently) and 13 µm (future) in the image plane; and (3) optic distance relative to the x-ray source and detector to within ±100 µm in each dimension. This article describes the capabilities of the calibration facility, concept of operations, and initial data from selected x-ray optics.

12.
Rev Sci Instrum ; 89(10): 10G115, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399891

RESUMO

A new Wolter x-ray imager has been developed for the Z machine to study the emission of warm (>15 keV) x-ray sources. A Wolter optic has been adapted from observational astronomy and medical imaging, which uses curved x-ray mirrors to form a 2D image of a source with 5 × 5 × 5 mm3 field-of-view and measured 60-300-µm resolution on-axis. The mirrors consist of a multilayer that create a narrow bandpass around the Mo Kα lines at 17.5 keV. We provide an overview of the instrument design and measured imaging performance. In addition, we present the first data from the instrument of a Mo wire array z-pinch on the Z machine, demonstrating improvements in spatial resolution and a 350-4100× increase in the signal over previous pinhole imaging techniques.

13.
J Appl Meteorol Climatol ; 56: 3263-3283, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30740040

RESUMO

A case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated with an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 µm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.

14.
Rev Sci Instrum ; 87(11): 11E316, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910471

RESUMO

Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 µm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 µm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766-774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 µm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a "narrow band" energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

15.
Biol Sport ; 33(3): 251-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27601779

RESUMO

Olympic weightlifting movements and their variations are believed to be among the most effective ways to improve power, strength, and speed in athletes. This study investigated the effects of two Olympic weightlifting variations (hang cleans and hang snatches), on power (vertical jump height), strength (1RM back squat), and speed (40-yard sprint) in female collegiate athletes. 23 NCAA Division I female athletes were randomly assigned to either a hang clean group or hang snatch group. Athletes participated in two workout sessions a week for six weeks, performing either hang cleans or hang snatches for five sets of three repetitions with a load of 80-85% 1RM, concurrent with their existing, season-specific, resistance training program. Vertical jump height, 1RM back squat, and 40-yard sprint all had a significant, positive improvement from pre-training to post-training in both groups (p≤0.01). However, when comparing the gain scores between groups, there was no significant difference between the hang clean and hang snatch groups for any of the three dependent variables (i.e., vertical jump height, p=0.46; 1RM back squat, p=0.20; and 40-yard sprint, p=0.46). Short-term training emphasizing hang cleans or hang snatches produced similar improvements in power, strength, and speed in female collegiate athletes. This provides strength and conditioning professionals with two viable programmatic options in athletic-based exercises to improve power, strength, and speed.

16.
J Virol ; 90(18): 8293-301, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27384659

RESUMO

UNLABELLED: Inhalation of infected brain homogenate results in transepithelial transport of prions across the nasal mucosa of hamsters, some of which occurs rapidly in relatively large amounts between cells (A. E. Kincaid, K. F. Hudson, M. W. Richey, and J. C. Bartz, J. Virol 86:12731-12740, 2012, doi:http://dx.doi.org/10.1128/JVI.01930-12). Bulk transepithelial transport in the nasal cavity has not been studied to date. In the present study, we characterized the frequency, size, and specificity of the intercellular spaces that mediate the bulk transport of inhaled prions between cells of mice or hamsters following extranasal inoculation with mock-infected brain homogenate, different strains of prion-infected brain homogenate, or brain homogenate mixed with India ink. Infected or mock-infected inoculum was identified within lymphatic vessels of the lamina propria and in spaces of >5 µm between a small number of cells of the nasal mucosa in >90% of animals from 5 to 60 min after inhalation. The width of the spaces between cells, the amount of the inoculum within the lumen of lymphatic vessels, and the timing of the transport indicate that this type of transport was taking place through preexisting spaces in the nasal cavity that were orders of magnitude wider than what is normally reported for paracellular transport. The indiscriminate rapid bulk transport of brain homogenate in the nasal cavity results in immediate entry into nasal cavity lymphatics following inhalation. This novel mechanism may underlie the recent report of the early detection of prions in blood following inhalation and has implications for horizontal prion transmission. IMPORTANCE: The results of these studies demonstrate that the nasal mucosa of mice and hamsters is not an absolute anatomical barrier to inhaled prion-infected or uninfected brain homogenate. Relatively large amounts of infected and uninfected brain homogenate rapidly cross the nasal mucosa and enter the lumen of lymphatic vessels following inhalation. These bulk transepithelial transport events were relatively rare but present in >90% of animals 5 to 60 min following inhalation. This novel mechanism of bulk transepithelial transport was seen in experimental and control hamsters and mice, indicating that it was not species specific or in response to prion exposure. The indiscriminate bulk intercellular transport of inhaled pathogens across the nasal mucosa followed by entry into the lymphatic system may be a mechanism that underlies the entry and spread of other toxins and pathogens in olfactory system-driven animals.


Assuntos
Cavidade Nasal/fisiologia , Príons/metabolismo , Animais , Transporte Biológico , Cricetinae , Camundongos , Fatores de Tempo
17.
Dalton Trans ; 44(39): 17268-77, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26374670

RESUMO

Dimeric metal complexes can often exhibit coupling interactions via bridging ligands. In this report, we present two Re(CO)3 dimers, where the metals are linked via a bis(pyca) hydrazine (pyca = pyridine-2-carbaldehyde imine) Schiff base ligand. For the dimeric compounds 4 and 5, we observe strong coupling across the dimer as measured by cyclic voltammetry: ∼480 mV separations between the first and the second reduction waves that correspond to comproportionation constants close to 1.5 × 10(8). Evidence for a mixed valence state upon one electron reduction was also observed by spectroelectrochemistry in which a clear inter-valence charge-transfer (IVCT) band was observed in [4]- and [5]-complexes. The electronic structures of all target compounds were probed by DFT and TDDFT computational methods. DFT calculations indicate that reduction takes place at the diimine units, and that the observed coupling is a ligand-based phenomenon, rather than one that involves metal-based orbitals.


Assuntos
Carbono/química , Complexos de Coordenação/química , Hidrazinas/química , Oxigênio/química , Rutênio/química , Carbono/metabolismo , Complexos de Coordenação/metabolismo , Dimerização , Hidrazinas/metabolismo , Oxigênio/metabolismo , Rutênio/metabolismo , Difração de Raios X
18.
Rev Sci Instrum ; 85(11): 11D611, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430187

RESUMO

Current pinhole x ray imaging at the National Ignition Facility (NIF) is limited in resolution and signal throughput to the detector for Inertial Confinement Fusion applications, due to the viable range of pinhole sizes (10-25 µm) that can be deployed. A higher resolution and throughput diagnostic is in development using a Kirkpatrick-Baez microscope system (KBM). The system will achieve <9 µm resolution over a 300 µm field of view with a multilayer coating operating at 10.2 keV. Presented here are the first images from the uncoated NIF KBM configuration demonstrating high resolution has been achieved across the full 300 µm field of view.

19.
Rev Sci Instrum ; 83(10): 10D729, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126901

RESUMO

Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

20.
Proc Natl Acad Sci U S A ; 109(30): 11939-43, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778436

RESUMO

Limitations in current capabilities to constrain aerosols adversely impact atmospheric simulations. Typically, aerosol burdens within models are constrained employing satellite aerosol optical properties, which are not available under cloudy conditions. Here we set the first steps to overcome the long-standing limitation that aerosols cannot be constrained using satellite remote sensing under cloudy conditions. We introduce a unique data assimilation method that uses cloud droplet number (N(d)) retrievals to improve predicted below-cloud aerosol mass and number concentrations. The assimilation, which uses an adjoint aerosol activation parameterization, improves agreement with independent N(d) observations and with in situ aerosol measurements below shallow cumulus clouds. The impacts of a single assimilation on aerosol and cloud forecasts extend beyond 24 h. Unlike previous methods, this technique can directly improve predictions of near-surface fine mode aerosols responsible for human health impacts and low-cloud radiative forcing. Better constrained aerosol distributions will help improve health effects studies, atmospheric emissions estimates, and air-quality, weather, and climate predictions.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Atmosfera/análise , Meteorologia/métodos , Modelos Teóricos , Simulação por Computador , Coleta de Dados , Oceano Pacífico , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...