Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(6): e202113665, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796599

RESUMO

This paper describes the demonstration of a series of heterobimetallic, isoreticular 2D conductive metal-organic frameworks (MOFs) with metallophthalocyanine (MPc, M=Co and Ni) units interconnected by Cu nodes towards low-power chemiresistive sensing of ppm levels of carbon monoxide (CO). Devices achieve a sub-part-per-million (ppm) limit of detection (LOD) of 0.53 ppm toward CO at a low driving voltage of 0.1 V. MPc-based Cu-linked MOFs can continuously detect CO at 50 ppm, the permissible exposure limit required by the Occupational Safety and Health Administration (OSHA), for multiple exposures, and realize CO detection in air and in humid environment. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), density functional theory (DFT) calculations, and comparison experiments suggest the contribution of Cu nodes to CO binding and the essential role of MPc units in tuning and amplifying the sensing response.


Assuntos
Técnicas Biossensoriais , Monóxido de Carbono/análise , Técnicas Eletroquímicas , Estruturas Metalorgânicas/química , Cobre/química , Tamanho da Partícula
2.
ACS Appl Mater Interfaces ; 13(50): 60306-60318, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34898182

RESUMO

This paper describes the design, synthesis, characterization, and performance of a novel semiconductive crystalline coordination network, synthesized using 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligands interconnected with bismuth ions, toward chemiresistive gas sensing. Bi(HHTP) exhibits two distinct structures upon hydration and dehydration of the pores within the network, Bi(HHTP)-α and Bi(HHTP)-ß, respectively, both with unprecedented network topology (2,3-c and 3,4,4,5-c nodal net stoichiometry, respectively) and unique corrugated coordination geometries of HHTP molecules held together by bismuth ions, as revealed by a crystal structure resolved via microelectron diffraction (MicroED) (1.00 Å resolution). Good electrical conductivity (5.3 × 10-3 S·cm-1) promotes the utility of this material in the chemical sensing of gases (NH3 and NO) and volatile organic compounds (VOCs: acetone, ethanol, methanol, and isopropanol). The chemiresistive sensing of NO and NH3 using Bi(HHTP) exhibits limits of detection 0.15 and 0.29 parts per million (ppm), respectively, at low driving voltages (0.1-1.0 V) and operation at room temperature. This material is also capable of exhibiting unique and distinct responses to VOCs at ppm concentrations. Spectroscopic assessment via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopic methods (i.e., attenuated total reflectance-infrared spectroscopy (ATR-IR) and diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS)), suggests that the sensing mechanisms of Bi(HHTP) to VOCs, NO, and NH3 comprise a complex combination of steric, electronic, and protic properties of the targeted analytes.

3.
J Am Chem Soc ; 141(5): 2046-2053, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30596491

RESUMO

This paper describes the first demonstration of using a series of isoreticular nickel phthalocyanine- and nickel naphthalocyanine-based bimetallic conductive two-dimensional (2D) metal-organic frameworks (MOFs) as active materials in chemiresistive sensing of gases. Devices achieve exceptional sensitivity at sub-part-per-million (ppm) to part-per-billion (ppb) detection limits toward NH3 (0.31-0.33 ppm), H2S (19-32 ppb), and NO (1.0-1.1 ppb) at low driving voltages (0.01-1.0 V) within 1.5 min of exposure. The devices maintain their performance in the presence of humidity (5000 ppm of H2O). The isoreticular analogs enable modular control over selectivity and sensitivity in gas sensing through different combinations of linkers and metal nodes. Electron paramagnetic resonance spectroscopy and X-ray photoelectron spectroscopy studies suggest that the chemiresistive response of the MOFs involves charge transfer interactions triggered by the analytes adsorbed on MOFs.

4.
Sensors (Basel) ; 17(10)2017 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28946624

RESUMO

The synthetically tunable properties and intrinsic porosity of conductive metal-organic frameworks (MOFs) make them promising materials for transducing selective interactions with gaseous analytes in an electrically addressable platform. Consequently, conductive MOFs are valuable functional materials with high potential utility in chemical detection. The implementation of these materials, however, is limited by the available methods for device incorporation due to their poor solubility and moderate electrical conductivity. This manuscript describes a straightforward method for the integration of moderately conductive MOFs into chemiresistive sensors by mechanical abrasion. To improve electrical contacts, blends of MOFs with graphite were generated using a solvent-free ball-milling procedure. While most bulk powders of pure conductive MOFs were difficult to integrate into devices directly via mechanical abrasion, the compressed solid-state MOF/graphite blends were easily abraded onto the surface of paper substrates equipped with gold electrodes to generate functional sensors. This method was used to prepare an array of chemiresistors, from four conductive MOFs, capable of detecting and differentiating NH3, H2S and NO at parts-per-million concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...