Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 110(10): 1641-1655.e6, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294899

RESUMO

Endothelial cells of blood vessels of the central nervous system (CNS) constitute blood-CNS barriers. Barrier properties are not intrinsic to these cells; rather they are induced and maintained by CNS microenvironment. Notably, the abluminal surfaces of CNS capillaries are ensheathed by pericytes and astrocytes. However, extrinsic factors from these perivascular cells that regulate barrier integrity are largely unknown. Here, we establish vitronectin, an extracellular matrix protein secreted by CNS pericytes, as a regulator of blood-CNS barrier function via interactions with its integrin receptor, α5, in endothelial cells. Genetic ablation of vitronectin or mutating vitronectin to prevent integrin binding, as well as endothelial-specific deletion of integrin α5, causes barrier leakage in mice. Furthermore, vitronectin-integrin α5 signaling maintains barrier integrity by actively inhibiting transcytosis in endothelial cells. These results demonstrate that signaling from perivascular cells to endothelial cells via ligand-receptor interactions is a key mechanism to regulate barrier permeability.


Assuntos
Células Endoteliais , Pericitos , Animais , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Integrina alfa5/metabolismo , Integrinas/metabolismo , Camundongos , Pericitos/fisiologia , Vitronectina/metabolismo
2.
Annu Rev Cell Dev Biol ; 35: 591-613, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31299172

RESUMO

The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/crescimento & desenvolvimento , Sistema Nervoso Central/citologia , Células Endoteliais/citologia , Animais , Astrócitos/citologia , Membrana Basal/citologia , Membrana Basal/metabolismo , Transporte Biológico/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/fisiologia , Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Homeostase , Humanos , Leucócitos , Acoplamento Neurovascular/fisiologia , Pericitos/citologia , Junções Íntimas , Transcitose/fisiologia , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
3.
Curr Opin Neurobiol ; 57: 32-38, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30708291

RESUMO

The blood-brain barrier (BBB) is a functional interface separating the brain from the circulatory system and is essential for homeostasis of the central nervous system (CNS). The BBB regulates molecular flux to maintain an optimal environment for neuronal function and protects the brain from toxins and pathogens. Endothelial cells forming the walls of CNS blood vessels constitute the BBB. CNS endothelial cells exhibit two features that underlie the restrictive properties of the BBB: specialized tight junctions that prevent paracellular passage between the blood and the brain, and unusually low levels of vesicle trafficking that limit transcellular transport or transcytosis. While the prevailing view in the field was that specialized tight junctions contributed to CNS barrier properties, recent findings have revealed the importance of maintaining low rates of transcytosis at the BBB. It is now clear that suppression of transcytosis at the BBB is an active process and CNS-specific genetic programs inhibit this pathway to maintain a functional barrier.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Transporte Biológico , Encéfalo , Transcitose
4.
Mol Biol Cell ; 28(19): 2543-2554, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28720664

RESUMO

The efficient transport of cargoes within axons and dendrites is critical for neuronal function. Although we have a basic understanding of axonal transport, much less is known about transport in dendrites. We used an optogenetic approach to recruit motor proteins to cargo in real time within axons or dendrites in hippocampal neurons. Kinesin-1, a robust axonal motor, moves cargo less efficiently in dendrites. In contrast, cytoplasmic dynein efficiently navigates both axons and dendrites; in both compartments, dynamic microtubule plus ends enhance dynein-dependent transport. To test the predictions of the optogenetic assay, we examined the contribution of dynein to the motility of an endogenous dendritic cargo and found that dynein inhibition eliminates the retrograde bias of BDNF/TrkB trafficking. However, inhibition of microtubule dynamics has no effect on BDNF/TrkB motility, suggesting that dendritic kinesin motors may cooperate with dynein to drive the transport of signaling endosomes into the soma. Collectively our data highlight compartment-specific differences in kinesin activity that likely reflect specialized tuning for localized cytoskeletal determinants, whereas dynein activity is less compartment specific but is more responsive to changes in microtubule dynamics.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dineínas do Citoplasma/fisiologia , Dendritos/fisiologia , Endossomos/fisiologia , Receptor trkB/metabolismo , Animais , Transporte Axonal , Axônios/metabolismo , Células Cultivadas , Dineínas do Citoplasma/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Dendritos/metabolismo , Endossomos/metabolismo , Hipocampo/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Neurônios/metabolismo , Transporte Proteico , Ratos , Transdução de Sinais
5.
Methods Cell Biol ; 128: 57-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25997342

RESUMO

Long-range intracellular transport of organelles driven by kinesin and dynein motor proteins depends on additional cellular factors including adaptors and scaffolding proteins. While single-molecule studies of the motility of purified motor proteins have been a powerful approach, these assays are not fully representative of the complex interactions that occur in a cellular environment. To gain insights into the functioning of adaptor proteins that work in concert with motors proteins, motility assays in cell extracts have been developed. These assays are an attractive means to begin to dissect the roles of additional factors in motor-driven transport. Further, this system can be easily manipulated to study this process in different physiological environments. Here we describe in vitro reconstitution of motor-driven motility along microtubules in cell extracts, followed by considerations for data analysis and how these assays can be powerful in informing our understanding of basic cellular processes.


Assuntos
Transporte Biológico/fisiologia , Movimento Celular/fisiologia , Dineínas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Animais , Células COS , Extratos Celulares , Linhagem Celular , Chlorocebus aethiops , Quimografia/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Organelas/metabolismo
7.
Nat Commun ; 5: 4807, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25185702

RESUMO

Dynactin is an essential cofactor for most cellular functions of the microtubule motor cytoplasmic dynein, but the mechanism by which dynactin activates dynein remains unclear. Here we use single molecule approaches to investigate dynein regulation by the dynactin subunit p150(Glued). We investigate the formation and motility of a dynein-p150(Glued) co-complex using dual-colour total internal reflection fluorescence microscopy. p150(Glued) recruits and tethers dynein to the microtubule in a concentration-dependent manner. Single molecule imaging of motility in cell extracts demonstrates that the CAP-Gly domain of p150(Glued) decreases the detachment rate of the dynein-dynactin complex from the microtubule and also acts as a brake to slow the dynein motor. Consistent with this important role, two neurodegenerative disease-causing mutations in the CAP-Gly domain abrogate these functions in our assays. Together, these observations support a model in which dynactin enhances the initial recruitment of dynein onto microtubules and promotes the sustained engagement of dynein with its cytoskeletal track.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Sítios de Ligação , Células COS , Movimento Celular/fisiologia , Chlorocebus aethiops , Complexo Dinactina , Dineínas/antagonistas & inibidores , Dineínas/genética , Dineínas/ultraestrutura , Feminino , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/ultraestrutura
8.
Nat Methods ; 8(3): 250-2, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278743

RESUMO

We present a method to control protein levels under native genetic regulation in Caenorhabditis elegans by using synthetic genes with adapted codons. We found that the force acting on the spindle in C. elegans embryos was related to the amount of the G-protein regulator GPR-1/2. Codon-adapted versions of any C. elegans gene can be designed using our web tool, C. elegans codon adapter.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Códon/genética , Regulação da Expressão Gênica , Técnicas Genéticas , Biossíntese de Proteínas/genética , Animais , Divisão Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...