Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 57(2): 405-13, 2002 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18968641

RESUMO

Isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) was used to examine the certified Cd and Zn content of 4 Certified Reference Materials (CRMs); 2 soils: GBW07401 and GBW07405, 1 plant CRM060 and an animal tissue SRM1566a. The CRMs were chosen to be of contrasting origin and Cd:Zn content. Three digestion procedures were compared: (i) an open tube aqua regia procedure (ii) microwave digestion using Teflon bombs and (iii) hydrofluoric acid (HF) digestion using PTFE bombs. The Cd and Zn levels obtained using ID-TIMS all fell within the published certified range for the CRMs. This was the case regardless of the digestion procedure used, although HF digestion tended to yield marginally higher levels than the other procedures and in one instance, Cd in GBW07401, was significantly different (P<0.05) from the certified range. A filament loading procedure was developed, to allow sequential analysis of Cd and Zn on the same single filament during thermal ionisation mass spectrometry analysis. The sequential analysis technique was evaluated to ensure that Zn did not fractionate during Cd analysis and there was no inter-element interference. No marked difference in the precision and accuracy of the isotope ratio measurements were obtained from sequential element analyses on the same filament when compared to individual element analyses for a range of standard solutions or for sample digests. The most efficient procedure in terms of costs and productivity for future work of this kind would be a combination of microwave digestion and sequential analysis of Cd and Zn on the same filament.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...