Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Autophagy ; : 1-34, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38442890

RESUMO

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.

2.
Mol Neurodegener ; 19(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317225

RESUMO

BACKGROUND: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved. METHODS: To elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). We utilised the SOD1G37R mouse model of ALS and a CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo. RESULTS: We found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from human cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Further, we show the molecular correlation between ferroptosis and neurotoxic astrocytes evident in human ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with a CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective. CONCLUSIONS: By showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Microglia/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Doenças Neurodegenerativas/metabolismo , Morte Celular , Modelos Animais de Doenças
3.
Neuroimage ; 289: 120547, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373677

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Ferro , Progressão da Doença , Mapeamento Encefálico/métodos
4.
Biochem Pharmacol ; 222: 116092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408679

RESUMO

Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an antimicrobial agent whose actions as a zinc or copper ionophore and an iron chelator revived the interest in similar compounds for the treatment of fungal and bacterial infections, neurodegeneration and cancer. Recently, we reported zinc ionophores, including clioquinol, cause vasorelaxation in isolated arteries through mechanisms that involve sensory nerves, endothelium and vascular smooth muscle. Here, we report that clioquinol also uniquely acts as a competitive alpha-1 (α1) adrenoceptor antagonist. We employed ex vivo functional vascular contraction and pharmacological techniques in rat isolated mesenteric arteries, receptor binding assays using stabilized solubilized α1 receptor variants, or wild-type human α1-adrenoceptors transfected in COS-7 cells (African green monkey kidney fibroblast-like cells), and molecular dynamics homology modelling based on the recently published α1A adrenoceptor cryo-EM and α1B crystal structures. At higher concentrations, all ionophores including clioquinol cause a non-competitive antagonism of agonist-mediated contraction due to intracellular zinc delivery, as reported previously. However, at lower concentration ranges, clioquinol has an additional mechanism of competitively inhibiting α1-adrenoceptors that contributes to decreasing vascular contractility. Molecular dynamic simulation showed that clioquinol binds stably to the orthosteric binding site (Asp106) of the receptor, confirming the structural basis for competitive α1-adrenoceptor antagonism by clioquinol.


Assuntos
Clioquinol , Ratos , Humanos , Animais , Chlorocebus aethiops , Clioquinol/farmacologia , Oxiquinolina , Receptores Adrenérgicos alfa 1/metabolismo , Ionóforos , Zinco
5.
J Neuroimaging ; 34(2): 224-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38174904

RESUMO

BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS) measures neurochemicals in vivo. Glutathione (GSH) is a neuroprotective chemical shown to vary significantly in patients with Alzheimer's disease (AD). This work investigates the reproducibility of GSH measures in the mesial temporal lobe (MTL) to identify its potential clinical utility. METHODS: MRS data were acquired from eight healthy volunteers (31.1 ± 5.2 years; 4 male/female) using Mescher-Garwood-Point Resolved Spectroscopy (MEGA-PRESS) from the MTL in the left hemisphere across two scan sessions in the same visit. Total N-acetylaspartate (tNAA), choline (tCho), creatine (tCr), and GSH were quantified. Reproducibility of quantifications of these neurochemicals were tested using coefficient of variance (CV) between scan sessions. Reproducibility of voxel placement on the left MTL was calculated by measuring the tissue overlap and percent of hippocampus within that voxel. CV measured across different scan sessions in each individual, with a CV<15% was accepted as "good" reproducibility. Paired t-tests were carried out to establish the significant differences between the two scans across each individual with p<.05 as significant. RESULTS: TNAA (%CV = 7.2; p = .5), tCr (%CV = 7.8; p = .6) and tCho (%CV = 9.3; p = .4), and GSH (%CV = 22; p = .1). The dice coefficient that reflects the level of overlap of hippocampal tissue in the voxel was shown to be 0.8 ± 0.1. Voxel tissue composition were: Scan 1 (cerebrospinal fluid [CSF]: 5 ± 1%, white matter [WM]: 52 ± 3%, gray matter [GM]: 43 ± 3%); Scan 2 (CSF: 5 ± 1%, WM: 52 ± 4%, GM: 44 ± 4%). CONCLUSION: The data suggest measures of abundant metabolites in the MTL using the MEGA-PRESS sequence has a high reproducibility. Reproducibility of GSH in this area was poorer requiring care when interpreting measures of GSH in the MTL for clinical translational purposes.


Assuntos
Glutationa , Lobo Temporal , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética/métodos , Lobo Temporal/diagnóstico por imagem , Glutationa/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
6.
Biomacromolecules ; 25(2): 1068-1083, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38178625

RESUMO

A great deal of nanocarriers have been applied to induce ferroptosis in cancer research, yet there are limited examples of nanocarrier formulations to rescue ferroptosis, which can be applied to neurodegeneration, inflammation, liver damage, kidney disease, and more. Here, we present the synthesis, characterization, and in vitro evaluation of pH-responsive, core-cross-linked micelle (CCM) ferrostatin-1 (Fer-1) conjugates with amine, valproic acid, and biotin surface chemistries. Fer-1 release from stable and defined CCM Fer-1 conjugates was quantified, highlighting the sustained release for 24 h. CCM Fer-1 conjugates demonstrated excellent ferroptosis rescue by their antilipid peroxidation activity in a diverse set of cell lines in vitro. Additionally, CCMs showed tunable cell association in SH-SY5Y and translocation across an in vitro blood-brain barrier (BBB) model, highlighting potential brain disease applications. Overall, here, we present a polymeric Fer-1 delivery system to enhance Fer-1 action, which could help in improving Fer-1 action in the treatment of ferroptosis-related diseases.


Assuntos
Micelas , Neuroblastoma , Humanos , Oxazóis , Linhagem Celular , Antígenos
7.
Crit Rev Microbiol ; 50(2): 127-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36597758

RESUMO

The cause of Alzheimer's disease (AD), and the pathophysiological mechanisms involved, remain major unanswered questions in medical science. Oral bacteria, especially those species associated with chronic periodontitis and particularly Porphyromonas gingivalis, are being linked causally to AD pathophysiology in a subpopulation of susceptible individuals. P. gingivalis produces large amounts of proteolytic enzymes, haem and iron capture proteins, adhesins and internalins that are secreted and attached to the cell surface and concentrated onto outer membrane vesicles (OMVs). These enzymes and adhesive proteins have been shown to cause host tissue damage and stimulate inflammatory responses. The ecological and pathophysiological roles of P. gingivalis OMVs, their ability to disperse widely throughout the host and deliver functional proteins lead to the proposal that they may be the link between a P. gingivalis focal infection in the subgingivae during periodontitis and neurodegeneration in AD. P. gingivalis OMVs can cross the blood brain barrier and may accelerate AD-specific neuropathology by increasing neuroinflammation, plaque/tangle formation and dysregulation of iron homeostasis, thereby inducing ferroptosis leading to neuronal death and neurodegeneration.


Assuntos
Doença de Alzheimer , Periodontite , Humanos , Porphyromonas gingivalis/genética , Adesinas Bacterianas/metabolismo , Periodontite/microbiologia , Ferro
8.
Mol Psychiatry ; 28(9): 3982-3993, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37735502

RESUMO

Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Proteínas tau/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Glucose/metabolismo , Doença de Alzheimer/metabolismo
9.
Sci Bull (Beijing) ; 68(21): 2507-2509, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37758617
10.
Acta Physiol (Oxf) ; 239(1): e14025, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37548350

RESUMO

AIM: Renal medullary hypoperfusion and hypoxia precede acute kidney injury (AKI) in ovine sepsis. Oxidative/nitrosative stress, inflammation, and impaired nitric oxide generation may contribute to such pathophysiology. We tested whether the antioxidant and anti-inflammatory drug, tempol, may modify these responses. METHODS: Following unilateral nephrectomy, we inserted renal arterial catheters and laser-Doppler/oxygen-sensing probes in the renal cortex and medulla. Noanesthetized sheep were administered intravenous (IV) Escherichia coli and, at sepsis onset, IV tempol (IVT; 30 mg kg-1 h-1 ), renal arterial tempol (RAT; 3 mg kg-1 h-1 ), or vehicle. RESULTS: Septic sheep receiving vehicle developed renal medullary hypoperfusion (76 ± 16% decrease in perfusion), hypoxia (70 ± 13% decrease in oxygenation), and AKI (87 ± 8% decrease in creatinine clearance) with similar changes during IVT. However, RAT preserved medullary perfusion (1072 ± 307 to 1005 ± 271 units), oxygenation (46 ± 8 to 43 ± 6 mmHg), and creatinine clearance (61 ± 10 to 66 ± 20 mL min-1 ). Plasma, renal medullary, and cortical tissue malonaldehyde and medullary 3-nitrotyrosine decreased significantly with sepsis but were unaffected by IVT or RAT. Consistent with decreased oxidative/nitrosative stress markers, cortical and medullary nuclear factor-erythroid-related factor-2 increased significantly and were unaffected by IVT or RAT. However, RAT prevented sepsis-induced overexpression of cortical tissue tumor necrosis factor alpha (TNF-α; 51 ± 16% decrease; p = 0.003) and medullary Thr-495 phosphorylation of endothelial nitric oxide synthase (eNOS; 63 ± 18% decrease; p = 0.015). CONCLUSIONS: In ovine Gram-negative sepsis, renal arterial infusion of tempol prevented renal medullary hypoperfusion and hypoxia and AKI and decreased TNF-α expression and uncoupling of eNOS. However, it did not affect markers of oxidative/nitrosative stress, which were significantly decreased by Gram-negative sepsis.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Ovinos , Fator de Necrose Tumoral alfa , Creatinina , Circulação Renal/fisiologia , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Hipóxia/metabolismo , Sepse/metabolismo , Escherichia coli
11.
Neurobiol Aging ; 129: 209-218, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399739

RESUMO

This study aimed to determine the relationship between the apolipoprotein E (APOE) ε4 allele and cerebrospinal fluid (CSF) and neuroimaging biomarkers of Alzheimer's disease, and cognition in cognitively unimpaired (CU) middle-aged adults (n = 82; Mage = 58.2), and in Aß- CU older adults (n = 71; Mage = 71.8). Aß- CU middle-aged ε4 carriers showed lower CSF Aß42 levels, higher levels of CSF total tau (t-tau) and neurofilament light (NfL), and poorer cognitive performance compared to noncarriers (Cohen's d: 0.30-0.56). In Aß- CU older adults, ε4 carriers also had lower CSF Aß42 levels and higher levels of CSF t-tau and p-tau181, compared to noncarriers (Cohen's d: 0.65-0.74). In both Aß- middle-aged and older adults, hippocampal and total brain volume were equivalent between ε4 carriers and noncarriers. In Aß- CU middle-aged adults, APOE ε4 is associated with decreased levels of Aß, increased tau and NfL, and poorer cognition. Similar relationships were observed in Aß- CU older adults. These results have implications for understanding clinicopathological relationships between APOE ε4 and the emergence of cognitive and biomarker abnormalities in Aß- adults.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Pessoa de Meia-Idade , Idoso , Apolipoproteína E4/genética , Apolipoproteína E4/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Proteínas tau/líquido cefalorraquidiano , Heterozigoto , Biomarcadores/líquido cefalorraquidiano
12.
Brain Commun ; 5(3): fcad175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389302

RESUMO

The clinical benefit associated with anti-amyloid immunotherapies, a new class of drugs for the treatment of Alzheimer's disease, is predicated on their ability to modify disease course by lowering brain amyloid levels. At the time of writing, two amyloid-lowering antibodies, aducanumab and lecanemab, have obtained United States Food and Drug Administration accelerated approval, with further agents of this class in the Alzheimer's disease treatment pipeline. Based on limited published clinical trial data to date, regulators, payors and physicians will need to assess their efficacy, clinical effectiveness and safety, as well as cost and accessibility. We propose that attention to three important questions related to treatment efficacy, clinical effectiveness and safety should guide evidence-based consideration of this important class of drugs. These are: (1) Were trial statistical analyses appropriate and did they convincingly support claims of efficacy? (2) Do reported treatment effects outweigh safety concerns and are they generalizable to a representative clinical population of people with Alzheimer's disease? and (3) Do the data convincingly demonstrate disease course modification, suggesting that increasing clinical benefits beyond the duration of the trials are likely? We suggest specific approaches to interpreting trial results for these drugs and highlight important areas of uncertainty where additional data and a cautious interpretation of existing results is warranted. Safe, effective and accessible treatments for Alzheimer's disease are eagerly awaited by millions of patients and their caregivers worldwide. While amyloid-targeting immunotherapies may be promising disease-modifying Alzheimer's disease treatments, rigorous and unbiased assessment of clinical trial data is critical to regulatory decision-making and subsequently determining their provision and utility in routine clinical practice. Our recommendations provide a framework for evidence-based appraisal of these drugs by regulators, payors, physicians and patients.

14.
Biomed Pharmacother ; 164: 114930, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37236031

RESUMO

Vitamin A (retinol) is a lipid-soluble vitamin that acts as a precursor for several bioactive compounds, such as retinaldehyde (retinal) and isomers of retinoic acid. Retinol and all-trans-retinoic acid (atRA) penetrate the blood-brain barrier and are reported to be neuroprotective in several animal models. We characterised the impact of retinol and its metabolites, all-trans-retinal (atRAL) and atRA, on ferroptosis-a programmed cell death caused by iron-dependent phospholipid peroxidation. Ferroptosis was induced by erastin, buthionine sulfoximine or RSL3 in neuronal and non-neuronal cell lines. We found that retinol, atRAL and atRA inhibited ferroptosis with a potency superior to α-tocopherol, the canonical anti-ferroptotic vitamin. In contrast, we found that antagonism of endogenous retinol with anhydroretinol sensitises ferroptosis induced in neuronal and non-neuronal cell lines. Retinol and its metabolites atRAL and atRA directly interdict lipid radicals in ferroptosis since these compounds displayed radical trapping properties in a cell-free assay. Vitamin A, therefore, complements other anti-ferroptotic vitamins, E and K; metabolites of vitamin A, or agents that alter their levels, may be potential therapeutics for diseases where ferroptosis is implicated.


Assuntos
Ferroptose , Vitamina A , Animais , Vitamina A/farmacologia , Peroxidação de Lipídeos/fisiologia , Tretinoína/farmacologia , Vitaminas , Retinaldeído , Lipídeos
15.
Antioxid Redox Signal ; 39(1-3): 141-161, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212212

RESUMO

Significance: The lack of disease-modifying treatments for Alzheimer's disease (AD) that substantially alter the course of the disease highlights the need for new biological models of disease progression and neurodegeneration. Oxidation of macromolecules within the brain, including lipids, proteins, and DNA, is believed to contribute to AD pathophysiology, concomitant with dysregulation of redox-active metals, such as iron. Creating a unified model of pathogenesis and progression underpinned by iron dysregulation and redox dysregulation in AD could lead to new therapeutic targets with disease-modifying potential. Recent Advances: Ferroptosis, which was named in 2012, is a necrotic form of regulated cell death that depends on both iron and lipid peroxidation. While it is distinct from other types of regulated cell death, ferroptosis is regarded as being mechanistically synonymous with oxytosis. The ferroptosis paradigm has great explanatory potential in describing how neurons degenerate and die in AD. At the molecular level, ferroptosis is executed by the lethal accumulation of phospholipid hydroperoxides generated by the iron-dependent peroxidation of polyunsaturated fatty acids, while the major defensive protein against ferroptosis is the selenoenzyme, glutathione peroxidase 4 (GPX4). An expanding network of protective proteins and pathways have also been identified to complement GPX4 in the protection of cells against ferroptosis, with a central role emerging for nuclear factor erythroid 2-related factor 2 (NRF2). Critical Issues: In this review, we provide a critical overview of the utility of ferroptosis and NRF2 dysfunction in understanding the iron- and lipid peroxide-associated neurodegeneration of AD. Future Directions: Finally, we discuss how the ferroptosis paradigm in AD is providing a new spectrum of therapeutic targets. Antioxid. Redox Signal. 39, 141-161.


Assuntos
Doença de Alzheimer , Ferroptose , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Morte Celular/genética , Peroxidação de Lipídeos/genética , Ferro/metabolismo
16.
Neurology ; 100(20): e2114-e2124, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36973044

RESUMO

BACKGROUND AND OBJECTIVES: To evaluate brain volume changes caused by different subclasses of anti-ß-amyloid (Aß) drugs trailed in patients with Alzheimer disease. METHODS: PubMed, Embase, and ClinicalTrials.gov databases were searched for clinical trials of anti-Aß drugs. This systematic review and meta-analysis included adults enrolled in randomized controlled trials of anti-Aß drugs (n = 8,062-10,279). The inclusion criteria were as follows: (1) randomized controlled trials of patients treated with anti-Aß drugs that have demonstrated to favorably change at least one biomarker of pathologic Aß and (2) detailed MRI data sufficient to assess the volumetric changes in at least one brain region. MRI brain volumes were used as the primary outcome measure; brain regions commonly reported include hippocampus, lateral ventricle, and whole brain. Amyloid-related imaging abnormalities (ARIAs) were investigated when reported in clinical trials. Of the 145 trials reviewed, 31 were included in the final analyses. RESULTS: A meta-analysis on the highest dose of each trial on hippocampus, ventricle, and whole brain revealed drug-induced acceleration of volume changes that varied by anti-Aß drug class. Secretase inhibitors accelerated atrophy to the hippocampus (Δ placebo - Δ drug: -37.1 µL [19.6% more than placebo]; 95% CI -47.0 to -27.1) and whole brain (Δ placebo - Δ drug: -3.3 mL [21.8% more than placebo]; 95% CI -4.1 to 2.5). Conversely, ARIA-inducing monoclonal antibodies accelerated ventricular enlargement (Δ placebo - Δ drug: +2.1 mL [38.7% more than placebo]; 95% CI 1.5-2.8) where a striking correlation between ventricular volume and ARIA frequency was observed (r = 0.86, p = 6.22 × 10-7). Mild cognitively impaired participants treated with anti-Aß drugs were projected to have a material regression toward brain volumes typical of Alzheimer dementia ∼8 months earlier than if they were untreated. DISCUSSION: These findings reveal the potential for anti-Aß therapies to compromise long-term brain health by accelerating brain atrophy and provide new insight into the adverse impact of ARIA. Six recommendations emerge from these findings.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Adulto , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Atrofia/tratamento farmacológico
17.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831558

RESUMO

Human epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis. The aim of this study was to understand the mechanisms of resistance to TKI-induced ferroptosis and identify novel approaches to overcome treatment resistance. We used mouse and human HER2-positive models of acquired TKI resistance to demonstrate an intimate link between the resistance to TKIs and to ferroptosis and present the first evidence that the cell adhesion receptor αvß3 integrin is a critical mediator of resistance to TKI-induced ferroptosis. Our findings indicate that αvß3 integrin-mediated resistance is associated with the re-wiring of the iron/antioxidant metabolism and persistent activation of AKT signalling. Moreover, using gene manipulation approaches and pharmacological inhibitors, we show that this "αvß3 integrin addiction" can be targeted to reverse TKI resistance. Collectively, these findings provide critical insights into new therapeutic strategies to improve the treatment of advanced HER2-positive breast cancer patients.

18.
Trends Neurosci ; 46(5): 333-335, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842947

RESUMO

Iron overload in neurodegenerative diseases is well established but of uncertain significance. In a recent article, Ryan et al. reveal that microglia are especially vulnerable to iron overload-induced ferroptosis. Their evidence for microglial ferroptosis in clinical specimens indicates that ferroptosis inhibitors may hold therapeutic promise for these diseases.


Assuntos
Sobrecarga de Ferro , Doenças Neurodegenerativas , Humanos , Ferro , Microglia
20.
Mol Psychiatry ; 28(5): 2058-2070, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36750734

RESUMO

Despite loss of grey matter volume and emergence of distinct cognitive deficits in young adults diagnosed with schizophrenia, current treatments for schizophrenia do not target disruptions in late maturational reshaping of the prefrontal cortex. Iron, the most abundant transition metal in the brain, is essential to brain development and function, but in excess, it can impair major neurotransmission systems and lead to lipid peroxidation, neuroinflammation and accelerated aging. However, analysis of cortical iron biology in schizophrenia has not been reported in modern literature. Using a combination of inductively coupled plasma-mass spectrometry and western blots, we quantified iron and its major-storage protein, ferritin, in post-mortem prefrontal cortex specimens obtained from three independent, well-characterised brain tissue resources. Compared to matched controls (n = 85), among schizophrenia cases (n = 86) we found elevated tissue iron, unlikely to be confounded by demographic and lifestyle variables, by duration, dose and type of antipsychotic medications used or by copper and zinc levels. We further observed a loss of physiologic age-dependent iron accumulation among people with schizophrenia, in that the iron level among cases was already high in young adulthood. Ferritin, which stores iron in a redox-inactive form, was paradoxically decreased in individuals with the disorder. Such iron-ferritin uncoupling could alter free, chemically reactive, tissue iron in key reasoning and planning areas of the young-adult schizophrenia cortex. Using a prediction model based on iron and ferritin, our data provide a pathophysiologic link between perturbed cortical iron biology and schizophrenia and indicate that achievement of optimal cortical iron homeostasis could offer a new therapeutic target.


Assuntos
Esquizofrenia , Adulto Jovem , Humanos , Adulto , Ferro , Córtex Pré-Frontal , Ferritinas , Biologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...