Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(17): 6704-6710, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058454

RESUMO

Reaction of a new ligand 6-DiPPon (6-diisopropylphosphino-2-pyridone) with 0.5 equiv of [RuCl2(p-cymene)]2 resulted in the formation of a mixture of [RuCl2(p-cymene)(κ1-P-6-DiPPon)]2 (1) and [RuCl(p-cymene)(κ2-P,N-6-DiPPin)]Cl ([2]Cl) (where 6-DiPPin = 6-diisopropylphosphino-2-hydroxypyridine). The ratio between the two products can be controlled by the nature of the solvent. The similar reaction between 6-DiPPon and [RuCl2(p-cymene)]2 in the presence of AgOTf and Na[BArF24] (where BArF24 = [{3,5-(CF3)2C6H3}4B]-) resulted in the formation of the complexes [RuCl(p-cymene)(κ2-P,N-6-DiPPin)]OTf, ([2]OTf) and [RuCl(p-cymene)(κ2-P,N-6-DiPPin)]BArF24 ([2]BArF24), respectively. Reactions between complex [2]Cl, [2]OTf, or [2]BArF24 and a base (either DBU or NaOMe) resulted in the deprotonation of the hydroxyl functional group to form a novel neutral orange-colored dearomatized complex, 3. The identity of complex 3 was confirmed as [RuCl(p-cymene)(κ2-P,N-6-DiPPon*)], where 6-DiPPon* is the anionic species (6-diisopropylphosphino-2-oxo-pyridinide), which contains the deprotonated moiety. The new 6-DiPPon ligand and its corresponding air stable half-sandwich derivative ruthenium complexes 1, [2]OTf, [2]BArF24, and 3 were all isolated in good yields and fully characterized by spectroscopic and analytical methods. The interconversions between the neutral and anionic forms of the ligands 6-DiPPon, 6-DiPPin, and 6-DiPPon* offer the potential for novel secondary sphere interactions and proton shuttling reactivity. The consequences for this have been explored in the activation of H2 and the subsequent catalytic hydrogenations of CO2 into formate salts in the presence of a base.

2.
Dalton Trans ; 51(31): 11582-11611, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35839074

RESUMO

A portfolio of value-added chemicals, fuels and building block compounds can be envisioned from CO2 on an industrial scale. The high kinetic and thermodynamic stabilities of CO2, however, present a significant barrier to its utilisation as a C1 source. In this context, metal-ligand cooperation methodologies have emerged as one of the most dominant strategies for the transformation of the CO2 molecule over the last decade or so. This review focuses on the advancements in CO2 transformation using these cooperative methodologies. Different and well-studied ligand cooperation methodologies, such as dearomatisation-aromatisation type cooperation, bimetallic cooperation (M⋯M'; M' = main group or transition metal) and other related strategies are also discussed. Furthermore, the cooperative bond activations are subdivided based on the number of atoms connecting the reactive centre in the ligand framework (spacer/linker length) and the transition metal. Several similarities across these seemingly distinct cooperative methodologies are emphasised. Finally, this review brings out the challenges ahead in developing catalytic systems from these CO2 transformations.


Assuntos
Dióxido de Carbono , Elementos de Transição , Dióxido de Carbono/química , Catálise , Ligantes , Metais/química
3.
Chem Commun (Camb) ; 57(3): 375-378, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33325466

RESUMO

Four lithium phosphine borohydride compounds featuring phenyl and naphthyl linkers have been synthesized. In-depth NMR analysis affords evidence for non-bonded through space P-B coupling. Reactivity towards CO2 leads to LiH transfer and to the quantitative formation of the corresponding ambiphilic phosphine-borane products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...