Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-14, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967334

RESUMO

While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. P. crassipes was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH4-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH4+-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.


The research succeeded in treating greywater by phytoremediation followed by recycling the exhausted P. crassipes plant to prepare an adsorbent material used in the post-treatment phase, giving an economically feasible scenario with 6.5-year payback period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...