Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chall ; 4(8): 1900080, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32782819

RESUMO

This article reports the thermoelectric-based solar energy harvesting. The effect of candle soot (CS) coating on solar energy harvesting potential of thermoelectric modules is studied. To compare the performance, uncoated/coated modules are exposed to solar radiations (through Fresnel lens) and the other side is kept at lower temperature using continuous water flow. Substantial enhancements in electrical outputs are observed due to CS coating on the upper surface of the thermoelectric module. The open-circuit voltage and short-circuit current across coated module improve more than six times in comparison to the uncoated module with maximum voltage and current reaching up to 1.5 V and 14 mA. Similarly, the generator can deliver a maximum power of 10 mW across a resistance of 50 Ω. Results indicate that the CS coating is an effective technique to improve the performance of thermoelectric materials for running sensors and other low-power electronic devices.

2.
Glob Chall ; 3(6): 1800089, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31565380

RESUMO

Pyroelectric performance is significantly improved using a coating of diesel exhaust soot. Coated pyroelectric sample (lead zirconate titanate) is exposed to a temporal temperature gradient. Under the application of infrared (IR) heating for a given temperature gradient, the maximum open circuit voltage improves more than four times, electric current across a resistance of 10 ohm improves more than six times, and the stored energy in 10 µF capacitor is enhanced by 17 times. These results are important from two aspects: 1) utilization of waste diesel exhaust soot and 2) improving energy harvesting performance of pyroelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...