Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6362, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289213

RESUMO

Visible and near-infrared spectrum photonic integrated circuits are quickly becoming a key technology to address the scaling challenges in quantum information and biosensing. Thus far, integrated photonic platforms in this spectral range have lacked integrated photodetectors. Here, we report silicon nitride-on-silicon waveguide photodetectors that are monolithically integrated in a visible light photonic platform on silicon. Owing to a leaky-wave silicon nitride-on-silicon design, the devices achieved a high external quantum efficiency of >60% across a record wavelength span from λ ~ 400 nm to ~640 nm, an opto-electronic bandwidth up to 9 GHz, and an avalanche gain-bandwidth product up to 173 ± 30 GHz. As an example, a photodetector was integrated with a wavelength-tunable microring in a single chip for on-chip power monitoring.

2.
Opt Lett ; 47(1): 26-29, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951874

RESUMO

We report multicore fibers (MCFs) with 10 and 16 linearly distributed cores with single-mode operation in the visible spectrum. The average propagation loss of the cores is 0.06 dB/m at λ = 445 nm and < 0.03 dB/m at wavelengths longer than 488 nm. The low inter-core crosstalk and nearly identical performance of the cores make these MCFs suitable for spatial division multiplexing in the visible spectrum. As a proof-of-concept application, one of the MCFs was coupled to an implantable neural probe to spatially address light-emitting gratings on the probe.

3.
Opt Express ; 27(10): 13781-13792, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163837

RESUMO

We report on the design, fabrication and testing of three types of coupling structures for hybrid chalcogenide glass Ge23Sb7S70-Silicon (GeSbS-Si) photonic integrated circuit platforms. The first type is a fully etched GeSbS grating coupler defined directly in the GeSbS film. Coupling losses of 5.3 dB and waveguide-to-waveguide back-reflections of 3.4% were measured at a wavelength of 1553 nm. Hybrid GeSbS-to-Si butt couplers and adiabatic couplers transmitting light between GeSbS and Si single-mode waveguides were further developed. The hybrid butt couplers (HBCs) feature coupling losses of 2.7 dB and 9.2% back-reflection. The hybrid adiabatic couplers (HACs) exhibit coupling losses of 0.7 dB and negligible back-reflection. Both HBCs and HACs have passbands exceeding the 100 nm measurement range of the test setup. GeSbS grating couplers and GeSbS-to-Si waveguide couplers can be co-fabricated in the same process flow, providing, for example, a means to first couple high optical power levels required for nonlinear signal processing directly into GeSbS waveguides and to later transition into Si waveguides after attenuation of the pump. Moreover, GeSbS waveguides and HBC transitions have been fabricated on post-processed silicon photonics chips obtained from a commercially available foundry service, with a previously deposited 2 µm thick top waveguide cladding. This fabrication protocol demonstrates the compatibility of the developed integration scheme with standard silicon photonics technology with a complete back-end-of-line process.

4.
Opt Lett ; 42(1): 81-84, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28059183

RESUMO

We present a novel resonant Mach-Zehnder modulator whose arms are each loaded with five identical resonators. Size and power consumption are aggressively reduced compared to conventional modulators based on linear phase shifters. At the same time, a large optical bandwidth of 3.8 nm is maintained. We experimentally demonstrate open eye diagrams at 30 Gbps with a signal Q-factor remaining within a factor of 2 of its peak value in an operational temperature range spanning 55°C.

5.
Opt Express ; 23(18): 23526-50, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26368451

RESUMO

We report on the design of Silicon Mach-Zehnder carrier depletion modulators relying on epitaxially grown vertical junction diodes. Unprecedented spatial control over doping profiles resulting from combining local ion implantation with epitaxial overgrowth enables highly linear phase shifters with high modulation efficiency and comparatively low insertion losses. A high average phase shifter efficiency of VπL = 0.74 V⋅cm is reached between 0 V and 2 V reverse bias, while maintaining optical losses at 4.2 dB/mm and the intrinsic RC cutoff frequency at 48 GHz (both at 1 V reverse bias). The fabrication process, the sensitivity to fabrication tolerances, the phase shifter performance and examples of lumped element and travelling wave modulators are modeled in detail. Device linearity is shown to be sufficient to support complex modulation formats such as 16-QAM.

6.
Opt Express ; 21(17): 19593-607, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24105506

RESUMO

We have investigated two novel concepts for the design of transmission lines in travelling wave Mach-Zehnder interferometer based Silicon Photonics depletion modulators overcoming the analog bandwidth limitations arising from cross-talk between signal lines in push-pull modulators and reducing the linear losses of the transmission lines. We experimentally validate the concepts and demonstrate an E/O -3 dBe bandwidth of 16 GHz with a 4V drive voltage (in dual drive configuration) and 8.8 dB on-chip insertion losses. Significant bandwidth improvements result from suppression of cross-talk. An additional bandwidth enhancement of ~11% results from a reduction of resistive transmission line losses. Frequency dependent loss models for loaded transmission lines and E/O bandwidth modeling are fully verified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...