Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 12: 675108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079574

RESUMO

Conifer forests worldwide are becoming increasingly vulnerable to the effects of climate change. Although the production of phenolic compounds (PCs) has been shown to be modulated by biotic and abiotic stresses, the genetic basis underlying the variation in their constitutive production level remains poorly documented in conifers. We used QTL mapping and RNA-Seq to explore the complex polygenic network underlying the constitutive production of PCs in a white spruce (Picea glauca) full-sib family for 2 years. QTL detection was performed for nine PCs and differentially expressed genes (DEGs) were identified between individuals with high and low PC contents for five PCs exhibiting stable QTLs across time. A total of 17 QTLs were detected for eight metabolites, including one major QTL explaining up to 91.3% of the neolignan-2 variance. The RNA-Seq analysis highlighted 50 DEGs associated with phenylpropanoid biosynthesis, several key transcription factors, and a subset of 137 genes showing opposite expression patterns in individuals with high levels of the flavonoids gallocatechin and taxifolin glucoside. A total of 19 DEGs co-localized with QTLs. Our findings represent a significant step toward resolving the genomic architecture of PC production in spruce and facilitate the functional characterization of genes and transcriptional networks responsible for differences in constitutive production of PCs in conifers.

3.
Evol Appl ; 13(10): 2704-2722, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294018

RESUMO

With climate change, the pressure on tree breeding to provide varieties with improved resilience to biotic and abiotic stress is increasing. As such, pest resistance is of high priority but has been neglected in most tree breeding programs, given the complexity of phenotyping for these traits and delays to assess mature trees. In addition, the existing genetic variation of resistance and its relationship with productivity should be better understood for their consideration in multitrait breeding. In this study, we evaluated the prospects for genetic improvement of the levels of acetophenone aglycones (AAs) in white spruce needles, which have been shown to be tightly linked to resistance to spruce budworm. Furthermore, we estimated the accuracy of genomic selection (GS) for these traits, allowing selection at a very early stage to accelerate breeding. A total of 1,516 progeny trees established on five sites and belonging to 136 full-sib families from a mature breeding population in New Brunswick were measured for height growth and genotyped for 4,148 high-quality SNPs belonging to as many genes along the white spruce genome. In addition, 598 trees were assessed for levels of AAs piceol and pungenol in needles, and 578 for wood stiffness. GS models were developed with the phenotyped trees and then applied to predict the trait values of unphenotyped trees. AAs were under moderate-to-high genetic control (h 2: 0.43-0.57) with null or marginally negative genetic correlations with other traits. The prediction accuracy of GS models (GBLUP) for AAs was high (PAAC: 0.63-0.67) and comparable or slightly higher than pedigree-based (ABLUP) or BayesCπ models. We show that AA traits can be improved and that GS speeds up the selection of improved trees for insect resistance and for growth and wood quality traits. Various selection strategies were tested to optimize multitrait gains.

4.
Heredity (Edinb) ; 124(4): 562-578, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969718

RESUMO

Genomic selection (GS) has a large potential for improving the prediction accuracy of breeding values and significantly reducing the length of breeding cycles. In this context, the choice of mating designs becomes critical to improve the efficiency of breeding operations and to obtain the largest genetic gains per time unit. Polycross mating designs have been traditionally used in tree and plant breeding to perform backward selection of the female parents. The possibility to use genetic markers for paternity identification and for building genomic prediction models should allow for a broader use of polycross tests in forward selection schemes. We compared the accuracies of genomic predictions of offspring's breeding values from a polycross and a full-sib (partial diallel) mating design with similar genetic background in white spruce (Picea glauca). Trees were phenotyped for growth and wood quality traits, and genotyped for 4092 SNPs representing as many gene loci distributed across the 12 spruce chromosomes. For the polycross progeny test, heritability estimates were smaller, but more precise using the genomic BLUP (GBLUP) model as compared with pedigree-based models accounting for the maternal pedigree or for the reconstructed full pedigree. Cross-validations showed that GBLUP predictions were 22-52% more accurate than predictions based on the maternal pedigree, and 5-7% more accurate than predictions using the reconstructed full pedigree. The accuracies of GBLUP predictions were high and in the same range for most traits between the polycross (0.61-0.70) and full-sib progeny tests (0.61-0.74). However, higher genetic gains per time unit were expected from the polycross mating design given the shorter time needed to conduct crosses. Considering the operational advantages of the polycross design in terms of easier handling of crosses and lower associated costs for test establishment, we believe that this mating scheme offers great opportunities for the development and operational application of forward GS.


Assuntos
Cruzamentos Genéticos , Picea , Melhoramento Vegetal , Seleção Genética , Genômica , Modelos Genéticos , Fenótipo , Picea/genética , Polimorfismo de Nucleotídeo Único , Traqueófitas
5.
BMC Genomics ; 19(1): 942, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558528

RESUMO

BACKGROUND: Norway spruce [Picea abies (L.) Karst.] is ecologically and economically one of the most important conifer worldwide. Our main goal was to develop a large catalog of annotated high confidence gene SNPs that should sustain the development of genomic tools for the conservation of natural and domesticated genetic diversity resources, and hasten tree breeding efforts in this species. RESULTS: Targeted sequencing was achieved by capturing P. abies exome with probes previously designed from the sequenced transcriptome of white spruce (Picea glauca (Moench) Voss). Capture efficiency was high (74.5%) given a high level of exome conservation between the two species. Using stringent criteria, we delimited a set of 61,771 high-confidence SNPs across 13,543 genes. To validate SNPs, a high-throughput genotyping array was developed for a subset of 5571 predicted SNPs representing as many different gene loci, and was used to genotype over 1000 trees. The estimated true positive rate of the resource was 84.2%, which was comparable with the genotyping success rate obtained for P. abies control SNPs recycled from previous genotyping efforts. We also analyzed SNP abundance across various gene functional categories. Several GO terms and gene families involved in stress response were found over-represented in highly polymorphic genes. CONCLUSION: The annotated high-confidence SNP catalog developed herein represents a valuable genomic resource, being representative of over 13 K genes distributed across the P. abies genome. This resource should serve a variety of population genomics and breeding applications in Norway spruce.


Assuntos
Exoma/genética , Picea/genética , Polimorfismo de Nucleotídeo Único , Mapeamento de Sequências Contíguas , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Genótipo , Anotação de Sequência Molecular , Folhas de Planta/genética , Análise de Sequência de DNA
6.
Mycologia ; 110(6): 1017-1032, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30481136

RESUMO

Mineral weathering plays an important role in poor-nutrient environments such as mine spoils and tailings. Ectomycorrhizal (ECM) fungi are able to enhance mineral weathering through different mechanisms, thereby increasing the availability of minerals and nutrients to plants. Six ECM fungi (Cadophora finlandia, Cenococcum geophilum, Hebeloma crustuliniforme, Lactarius aurantiosordidus, Paxillus involutes, and Tricholoma scalpturatum) were tested here for their tolerance to biotite-quartz-rich mine tailings. Either solid- or liquid-medium methods were used for in vitro selection of ECM fungi for their ability to grow on mine tailings. ECM fungi were selected based on their mycelial radial growth and metabolite production (ergosterol and low-molecular-mass organic acids, LMMOAs). We found a strong correlation between fungal ergosterol content and mycelial radial growth using the solid-medium method. However, the liquid-medium method was more appropriate for ergosterol synthesis and permitted direct measurement of organic acid production. We found that LMMOAs were exuded by ECM fungi, which solubilized mine tailings for their own growth and nutrition. Finally, we concluded that the ECM fungi C. finlandia and T. scalpturatum are the species most tolerant to tailings and could potentially improve the survival rate, growth, and health of white spruce seedlings planted on biotite mine spoils and tailings.


Assuntos
Silicatos de Alumínio/metabolismo , Biodegradação Ambiental , Biomassa , Meios de Cultura/química , Compostos Ferrosos/metabolismo , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Adaptação Fisiológica , Ergosterol/análise , Mineração , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Filogenia , Picea/microbiologia , Raízes de Plantas/microbiologia , Plântula/microbiologia
7.
Sleep Med ; 15(12): 1440-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25277664

RESUMO

BACKGROUND: Shift work disorder involves insomnia and/or excessive sleepiness associated with the work schedule. The present study examined the impact of insomnia on the perceived physical and psychological health of adults working on night and rotating shift schedules compared to day workers. METHODS: A total of 418 adults (51% women, mean age 41.4 years), including 51 night workers, 158 rotating shift workers, and 209 day workers were selected from an epidemiological study. An algorithm was used to classify each participant of the two groups (working night or rotating shifts) according to the presence or absence of insomnia symptoms. Each of these individuals was paired with a day worker according to gender, age, and income. Participants completed several questionnaires measuring sleep, health, and psychological variables. RESULTS: Night and rotating shift workers with insomnia presented a sleep profile similar to that of day workers with insomnia. Sleep time was more strongly related to insomnia than to shift work per se. Participants with insomnia in the three groups complained of anxiety, depression, and fatigue, and reported consuming equal amounts of sleep-aid medication. Insomnia also contributed to chronic pain and otorhinolaryngology problems, especially among rotating shift workers. Work productivity and absenteeism were more strongly related to insomnia. CONCLUSION: The present study highlights insomnia as an important component of the sleep difficulties experienced by shift workers. Insomnia may exacerbate certain physical and mental health problems of shift workers, and impair their quality of life.


Assuntos
Distúrbios do Início e da Manutenção do Sono/etiologia , Tolerância ao Trabalho Programado/fisiologia , Absenteísmo , Adulto , Ansiedade/epidemiologia , Ansiedade/etiologia , Depressão/epidemiologia , Depressão/etiologia , Eficiência/fisiologia , Fadiga/epidemiologia , Fadiga/etiologia , Feminino , Nível de Saúde , Humanos , Masculino , Escalas de Graduação Psiquiátrica , Qualidade de Vida , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Inquéritos e Questionários
8.
Plant Sci ; 180(1): 111-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21421353

RESUMO

Greens-type annual bluegrass (Poa annua L.) is susceptible to winter stresses including subfreezing temperatures and pink snow mold (SM). To better understand the mechanisms of SM resistance in annual bluegrass, four SM-resistant and four SM-sensitive genotypes were incubated at low temperature with Microdochium nivale (Fries) Samuels & Hallett, the causal agent of pink snow mold. We assessed the impact of a 6-week incubation period with SM at 2 °C under high humidity (≥ 98%) on the accumulation of cold-induced metabolites and on freezing tolerance. Incubation of annual bluegrass inoculated with SM lead to a major decrease in concentration of cryoprotective sugars such as sucrose and HDP (high degree of polymerization) fructans. Conversely, major amino acids linked to stress resistance such as glutamine and arginine increased in crowns of annual bluegrass in response to SM inoculation. One of the major differences between resistant and sensitive genotypes was found in the concentration of HDP fructans, which remained higher in SM-resistant genotypes throughout the incubation period. HDP fructans were also more abundant in freeze-tolerant genotypes, reinforcing their positive impact on winter survival of annual bluegrass. The identification of genotypes that are resistant to both SM and freezing shows the possibility of being able to improve both traits concomitantly.


Assuntos
Aminoácidos/metabolismo , Temperatura Baixa , Doenças das Plantas/microbiologia , Poa/metabolismo , Ascomicetos/patogenicidade , Carboidratos , Congelamento , Genótipo , Poa/genética , Poa/microbiologia
9.
Mol Plant Microbe Interact ; 22(2): 190-200, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19132871

RESUMO

In natural conditions, plants are subjected to a combination of biotic stresses and often have to cope with simultaneous pathogen infections. In this report, we aim to understand the global transcriptional response of hybrid poplar NM6 (Populus nigra x P. maximowiczii) to infection by two biotrophic Melampsora fungi, Melampsora larici-populina and M. medusae f. sp. deltoidae. These pathogens triggered different responses after inoculation of poplar leaves. Transcript profiling using the GeneChip Poplar Genome Array revealed a total of 416 differentially expressed transcripts whose expression level was > or = twofold relative to controls. Interestingly, approximately half of the differentially expressed genes in infected leaves showed altered expression following interaction with either of the Melampsora spp. We also infected poplar leaves simultaneously with both Melampsora spp. to investigate potential interaction between the responses to the individual pathogens during a mixed infection. For this mixed inoculation, the number of differentially expressed transcripts increased to 648 and our analysis showed that infection with both fungi also induced a common set of genes. The genes induced after Melampsora spp. infection were mainly related to primary and secondary metabolic processes, cell-wall reinforcement and lignification, defense and stress-related mechanisms, and signal perception and transduction.


Assuntos
Basidiomycota/fisiologia , Quimera/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Populus/genética , Populus/microbiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Anti-Infecciosos/metabolismo , Parede Celular/genética , Células Clonais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Populus/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
10.
Genome ; 49(11): 1366-73, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17426751

RESUMO

Microsatellites are simple, tandem DNA repeats that represent unstable regions of the genome. They undergo frequent changes in tract length by base additions or deletions due to DNA polymerase slippage during replication. To characterize factors affecting the frequency of spontaneous mutations occurring in microsatellites in plants, a reporter system was used in Arabidopsis thaliana and tomato (Lycopersicon esculentum). The beta-glucuronidase (GUS) reporter system was used to measure the mutation frequency in various microsatellites (G(7), G(10), G(13), G(16), and C(16)) in somatic tissues. Our results indicate that this frequency increases with the number of repeats: a G(16) tract was almost 80-fold more mutable than a G(7) tract. Furthermore, the frequency of mutations depends on repeat orientation, as G(16) was 3-fold more mutable than C(16). The mutation rate was also found to differ markedly in Arabidopsis and tomato for an identical microsatellite. Indeed, Arabidopsis showed a 5-fold higher mutation frequency than tomato with the same G(7) reporter construct. Finally, mutation in a G(16) tract was frequent enough that mutations transmitted germinally to the next generation could be detected at a relatively high frequency.


Assuntos
Arabidopsis/genética , Repetições de Microssatélites , Mutação , Solanum lycopersicum/genética , Genes Reporter , Mutação em Linhagem Germinativa , Glucuronidase/genética , Glucuronidase/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...