Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 86(9): 2151-2161, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37703852

RESUMO

Prostate cancer is the fifth leading cause of cancer death in men, responsible for over 375,000 deaths in 2020. Novel therapeutic strategies are needed to improve outcomes. Cannabinoids, chemical components of the cannabis plant, are a possible solution. Preclinical evidence demonstrates that cannabinoids can modulate several cancer hallmarks of many tumor types. However, the therapeutic potential of cannabinoids in prostate cancer has not yet been fully explored. The aim of this study was to investigate the antiproliferative and anti-invasive properties of cannabidiol (CBD) in prostate cancer cells in vitro. CBD inhibited cell viability and proliferation, accompanied by reduced expression of key cell cycle proteins, specifically cyclin D3 and cyclin-dependent kinases CDK2, CDK4, and CDK1, and inhibition of AKT phosphorylation. The effects of CBD on cell viability were not blocked by cannabinoid receptor antagonists, a transient receptor potential vanilloid 1 (TRPV1) channel blocker, or an agonist of the G-protein-coupled receptor GPR55, suggesting that CBD acts independently of these targets in prostate cancer cells. Furthermore, CBD reduced the invasiveness of highly metastatic PC-3 cells and increased protein expression of E-cadherin. The ability of CBD to inhibit prostate cancer cell proliferation and invasiveness suggests that CBD may have potential as a future chemotherapeutic agent.


Assuntos
Canabidiol , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Canabidiol/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Próstata , Proliferação de Células
2.
Cell Cycle ; 22(14-16): 1759-1776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377210

RESUMO

Castrate-resistant prostate cancer (CRPC) is challenging to treat, despite improvements with next-generation anti-androgens such as enzalutamide, due to acquired resistance. One of the mechanisms of such resistance includes aberrant activation of co-factors of the androgen receptor (AR), such as the serum response factor (SRF), which was associated with prostate cancer progression and resistance to enzalutamide. Here, we show that inhibition of SRF with three small molecules (CCG-1423, CCG-257081 and lestaurtinib), singly and in combination with enzalutamide, reduces cell viability in an isogenic model of CRPC. The effects of these inhibitors on the cell cycle, singly and in combination with enzalutamide, were assessed with western blotting, flow cytometry and ß-galactosidase staining. In the androgen deprivation-sensitive LNCaP parental cell line, a synergistic effect between enzalutamide and all three inhibitors was demonstrated, while the androgen deprivation-resistant LNCaP Abl cells showed synergy only with the lestaurtinib and enzalutamide combination, suggesting a different mechanism of action of the CCG series of compounds in the absence and presence of androgens. Through analysis of cell cycle checkpoint proteins, flow cytometry and ß-galactosidase staining, we showed that all three SRF inhibitors, singly and in combination with enzalutamide, induced cell cycle arrest and decreased S phase. While CCG-1423 had a more pronounced effect on the expression of cell cycle checkpoint proteins, CCG-257081 and lestaurtinib decreased proliferation also through induction of cellular senescence. In conclusion, we show that inhibition of an AR co-factors, namely SRF, provides a promising approach to overcoming resistance to AR inhibitors currently used in the clinic.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Androgênios/farmacologia , Antagonistas de Androgênios/farmacologia , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Proliferação de Células , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Nitrilas/farmacologia , Pontos de Checagem do Ciclo Celular , beta-Galactosidase/metabolismo , Resistencia a Medicamentos Antineoplásicos
3.
Expert Opin Ther Targets ; 26(2): 155-169, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35114091

RESUMO

INTRODUCTION: The Serum Response Factor (SRF) is a transcription factor involved in three hallmarks of cancer: the promotion of cell proliferation, cell death resistance and invasion and metastasis induction. Many studies have demonstrated a leading role in the development and progression of multiple cancer types, thus highlighting the potential of SRF as a prognostic biomarker and therapeutic target, especially for cancers with poor prognosis. AREAS COVERED: This review examines the role of SRF in several cancers in promoting cellular processes associated with cancer development and progression. SRF co-factors and signaling pathways are discussed as possible targets to inhibit SRF in a tissue and cancer-specific way. Small-molecule inhibitors of SRF, such as the CCGs series of compounds and lestaurtinib, which could be used as cancer therapeutics, are also discussed. EXPERT OPINION: Targeting of SRF and its co-factors represents a promising therapeutic approach. Further understanding of the molecular mechanisms behind the action of SRF could provide a pipeline of novel molecular targets and therapeutic combinations for cancer. Basket clinical trials and the use of SRF immunohistochemistry as companion diagnostics will help testing of these new targets in patients.


Assuntos
Neoplasias , Fator de Resposta Sérica , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo
4.
Cancers (Basel) ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260953

RESUMO

Castrate-resistant prostate cancer (CRPC) is challenging to treat with the androgen receptor (AR), the main target and key focus of resistance. Understanding the mechanisms of AR interaction with co-regulators will identify new therapeutic targets to overcome AR resistance mechanisms. We previously identified the serum response factor (SRF) as a lead target in an in vitro model of CRPC and showed that SRF expression in tissues of CRPC patients was associated with shorter survival. Here, we tested SRF inhibition in vitro and in vivo to assess SRF as a potential target in CRPC. Inhibition of SRF with the small-molecule inhibitor CCG1423 resulted in enhanced response to enzalutamide in vitro and reduced tumour volume of LuCaP 35CR, a CRPC patient-derived xenograft model. Nuclear localisation of AR post-CCG1423 was significantly decreased and was associated with decreased α-tubulin acetylation in vitro and decreased prostate specific antigen (PSA) levels in vivo. SRF immunoreactivity was tested in metastatic tissues from CRPC patients to investigate its role in enzalutamide response. Kaplan-Meier curves showed that high SRF expression was associated with shorter response to enzalutamide. Our study supports the use of SRF inhibitors to improve response to enzalutamide.

5.
FEMS Yeast Res ; 15(5): fov035, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26066552

RESUMO

Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm-for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Torulaspora/genética , Evolução Biológica , Sequência Conservada , Complexo Dinactina , Dineínas/genética , Genes Fúngicos , Histidina/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Família Multigênica/genética , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...