Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 95(11): e10942, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872103

RESUMO

The ceramic filter amended with iron (Fe) has proven to be a potential low-cost method for arsenic (As) removal from groundwater. The presence of Fe, phosphate (P), and silicate (Si) significantly affects the As removal efficiency of the ceramic filter, which has not been passably investigated. The present research aimed to examine the effect of Fe, P, and (or) Si presence as single or in combination on As (III) removal from synthetics groundwater by a low-cost iron amended ceramic filter (IACF). Laboratory-scale filtration experiments at different compositions of Fe, P, Si, and As (III) were conducted by the IACF fabricated with a ceramic candle and iron netting box. Fe (II) in synthetic groundwater positively impacted As (III) removal. At a concentration of 2 mg/L of Fe (II), the As levels in the effluent decreased to less than the maximum contamination level (MCL) of 50 µg/L. Groundwater P concentration needed less than 3 mg/L or Si concentrations required less than 35 mg/L to effectively reduce As (III) to below the MCL at 5 mg/L of groundwater Fe (II). The cumulative effect of P and Si on As removal was found to be more significant than distinct contributions. The presence of 2 mg/L P and 35 mg/L or higher Si in the groundwater cumulatively reduced the As removal performance from 92% to 63%, and the MCL was not met. The negative impact of P and Si on As (III) removal followed the order of (P + Si) > P > Si. P competed with As for adsorption sites during the process, while Si inhibited the Fe release and floc formation, significantly reducing As removal performance. The study findings can potentially contribute to optimizing IACF as a low-cost method for As removal from groundwater.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Ferro , Fosfatos , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Silicatos
2.
J Environ Manage ; 343: 118204, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229862

RESUMO

Irrigation water in rice cultivation significantly affects the arsenic (As) mobilization in the paddy field soil. This research assessed the effect of rainwater (RW) and groundwater (GW) on the dissolution dynamics of arsenic (As) in paddy field soil. Up-flow column flooding experiments were conducted continuously for 80 d with simulated RW and GW to evaluate As dissolution phenomena in actual field conditions. Arsenic dissolution from the soil was lower in GW (309 µg/kg) irrigation than in RW flooding conditions (1086 µg/kg). The redox potential (Eh) of the soil pore water decreased, and pH increased over-irrigation time in both flooding conditions. The dissolution of arsenic (As) and iron (Fe) in the soil pore increased, while the dissolution of manganese (Mn) decreased over flooding time. The release of As in the soil pore water was attributed to the dissolution of Fe-As and Mn-As minerals and microbial reduction of As. Fe-As dissolution ratios in the soil pore water were relatively low and estimated as 0.68 mol/mol and 4.9 mol/mol for RW and GW, respectively. The dissolution of As and Mn dominated in the initial phase (0-40 d) of flooding, while the dissolution of As and Fe dominated in the second phase (40-80 d). The release of As was much lower in GW flooding than in RW flooding conditions. The Presence of Ca, Mg, and Mn in the GW facilitated the reduction of As dissolution by precipitating Ca-As and Mg-As and the oxidizing dissolved Mn in the soil pore water. The findings of this study provide valuable insights into the mechanisms of As release during monsoon flooding and groundwater flooding to assess the potential risks of As contamination in rice grown in paddy field soils.


Assuntos
Arsênio , Água Subterrânea , Oryza , Poluentes do Solo , Arsênio/análise , Solo , Inundações , Água/metabolismo , Poluentes do Solo/análise
3.
J Environ Manage ; 278(Pt 1): 111548, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33126200

RESUMO

Current microalgal based photobioreactors focus on the secondary treated effluent while limited researches attempted for treating the raw domestic wastewater. This study aimed to assess the microalgal biomass production, removal performance, and fouling characteristics of microalgal membrane bioreactors (MMBRs) for treating synthetic wastewater under different conditions of organic loading rate (OLR) and hydraulic residence time (HRT). The 12h/12 h dark/light cycle continuous experiments were performed for four MMBRs at different OLRs and three MMBRs at different HRTs. Results showed that microalgal biomass production rate (as TSS and chlorophyll-a) decreased with increasing OLR and increased with decreasing of HRT. Regardless of the OLR and HRT conditions, MMBRs can achieve up to 94% organic removal by bacterial oxidation without external aeration. Total nitrogen (TN) and total phosphorus (TP) removals were significantly decreased with increasing OLR. Highest TN removal (68.4%) achieved at the OLR of 0.014 kg/(m3 d) which was reduced to 58.1% at 0.028 kg/(m3 d). Removals of total phosphorous significantly decreased from 48.2% to 37.7% with an increase in OLR from 0.011 to 0.014 kg/(m3 d). TN removal was reduced at shorten HRT (2 d), while, the effect of HRT was found insignificant at higher HRT. An effective removal of P can only be achieved at higher HRTs, i.e., 7 days. OLR up to 0.014 kg/(m3 d) and 2 days HRT was found suitable for maintaining the fouling frequency at an optimal level of 0.016/d. Overall the OLR and HRT need to be carefully selected to achieve optimal efficiency of MMBR. The results of this study provide guidelines for designing the microalgal-based membrane bioreactors for the treatment of domestic wastewater.


Assuntos
Microalgas , Purificação da Água , Reatores Biológicos , Membranas , Eliminação de Resíduos Líquidos , Águas Residuárias
4.
Water Environ Res ; 87(3): 233-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25842534

RESUMO

The performance of a low cost and simple ceramic filter to a membrane bioreactor (MBR) process was evaluated for greywater treatment. The ceramic filter was submerged in an acrylic cylindrical column bioreactor. Synthetic greywater (prepared by shampoo, dish cleaner and laundry detergent) was fed continuously into the reactor. The filter effluent was obtained by gravitational pressure. The average flux performance was observed to be 11.5 LMH with an average hydraulic retention time of 1.7 days. Complete biodegradation of surfactant (methylene blue active substance removal: 99-100%) as well as high organic removal performance (biochemical oxygen demand: 97-100% and total organic carbon: >88%) was obtained. The consistency of flux (11.5 LMH) indicated that the filter can be operated for a long time without fouling. The application of this simple ceramic filter would make MBR technology cost-effective in developing countries for greywater reclamation and reuse.


Assuntos
Reatores Biológicos , Cerâmica , Filtração/instrumentação , Membranas Artificiais , Reciclagem , Purificação da Água/instrumentação , Fatores de Tempo , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...