Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1352387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419729

RESUMO

Mild traumatic brain injury (mTBI) may be caused by occupational hazards military personnel encounter, such as falls, shocks, exposure to blast overpressure events, and recoil from weapon firing. While it is important to protect against injurious head impacts, the repeated exposure of Canadian Armed Forces (CAF) service members to sub-concussive events during the course of their service may lead to a significant reduction in quality of life. Symptoms may include headaches, difficulty concentrating, and noise sensitivity, impacting how personnel complete their duties and causing chronic health issues. This study investigates how the exposure to the recoil force of long-range rifles results in head motion and brain deformation. Direct measurements of head kinematics of a controlled population of military personnel during firing events were obtained using instrumented mouthguards. The experimentally measured head kinematics were then used as inputs to a finite element (FE) head model to quantify the brain strains observed during each firing event. The efficacy of a concept recoil mitigation system (RMS), designed to mitigate loads applied to the operators was quantified, and the RMS resulted in lower loading to the operators. The outcomes of this study provide valuable insights into the magnitudes of head kinematics observed when firing long-range rifles, and a methodology to quantify effects, which in turn will help craft exposure guidelines, guide training to mitigate the risk of injury, and improve the quality of lives of current and future CAF service members and veterans.

2.
J Biomech Eng ; 142(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539422

RESUMO

Military personnel sustain head and brain injuries as a result of ballistic, blast, and blunt impact threats. Combat helmets are meant to protect the heads of these personnel during injury events. Studies show peak kinematics and kinetics are attenuated using protective headgear during impacts; however, there is limited experimental biomechanical literature that examines whether or not helmets mitigate peak mechanics delivered to the head and brain during blast. While the mechanical links between blast and brain injury are not universally agreed upon, one hypothesis is that blast energy can be transmitted through the head and into the brain. These transmissions can lead to rapid skull flexure and elevated pressures in the cranial vault, and, therefore, may be relevant in determining injury likelihood. Therefore, it could be argued that assessing a helmet for the ability to mitigate mechanics may be an appropriate paradigm for assessing the potential protective benefits of helmets against blast. In this work, we use a surrogate model of the head and brain to assess whether or not helmets and eye protection can alter mechanical measures during both head-level face-on blast and high forehead blunt impact events. Measurements near the forehead suggest head protection can attenuate brain parenchyma pressures by as much as 49% during blast and 52% during impact, and forces on the inner table of the skull by as much as 80% during blast and 84% during impact, relative to an unprotected head.


Assuntos
Simulação por Computador , Dispositivos de Proteção da Cabeça , Fenômenos Biomecânicos , Encéfalo , Lesões Encefálicas , Explosões , Pressão Intracraniana
3.
Ann Biomed Eng ; 45(3): 681-694, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27562143

RESUMO

The goal of this study was to develop stable intraspinal microstimulation (ISMS) implants for use in humans to restore standing and walking after spinal cord injury. ISMS electrically activates locomotor networks within the lumbar region of the spinal cord. In animals, ISMS produced better functional outcomes than those obtained by other interventions, and recent efforts have focused on translating this approach to humans. This study used domestic pigs to: (1) quantify the movements and length changes of the implant region of the spinal cord during spine flexion and extension movements; and (2) measure the forces leading to the dislodgement of the ISMS electrodes. The displacement of the spinal cord implant region was 5.66 ± 0.57 mm relative to the implant fixation point on the spine. The overall length change of the spinal cord implant region was 5.64 ± 0.59 mm. The electrode dislodgment forces were 60.9 ± 35.5 mN. Based on these results, six different coil types were fabricated and their strain relief capacity assessed. When interposed between the electrodes and the stimulator, five coil types successfully prevented the dislodgement of the electrodes. The results of this study will guide the design of mechanically stable ISMS implants for ultimate human use.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Implantes Experimentais , Locomoção , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Terapia por Estimulação Elétrica/métodos , Humanos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...