Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Ecol ; 82(3): 746-760, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33604703

RESUMO

Species may co-occur due to responses to similar environmental conditions, biological associations, or simply because of coincident geographical distributions. Disentangling patterns of co-occurrence and potential biotic and abiotic interactions is crucial to understand ecosystem function. Here, we used DNA metabarcoding data from litter and mineral soils collected from a longitudinal transect in Amazonia to explore patterns of co-occurrence. We compared data from different Amazonian habitat types, each with a characteristic biota and environmental conditions. These included non-flooded rainforests (terra-firme), forests seasonally flooded by fertile white waters (várzeas) or by unfertile black waters (igapós), and open areas associated with white sand soil (campinas). We ran co-occurrence network analyses based on null models and Spearman correlation for all samples and for each habitat separately. We found that one third of all operational taxonomic units (OTUs) were bacteria and two thirds were eukaryotes. The resulting networks were nevertheless mostly composed of bacteria, with fewer fungi, protists, and metazoans. Considering the functional traits of the OTUs, there is a combination of metabolism modes including respiration and fermentation for bacteria, and a high frequency of saprotrophic fungi (those that feed on dead organic matter), indicating a high turnover of organic material. The organic carbon and base saturation indices were important in the co-occurrences in Amazonian networks, whereas several other soil properties were important for the co-exclusion. Different habitats had similar network properties with some variation in terms of modularity, probably associated with flooding pulse. We show that Amazonian microorganism communities form highly interconnected co-occurrence and co-exclusion networks, which highlights the importance of complex biotic and abiotic interactions in explaining the outstanding biodiversity of the region.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Biodiversidade , Florestas , Floresta Úmida , Microbiologia do Solo
2.
Syst Biol ; 70(3): 623-633, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33306123

RESUMO

Species distribution data are fundamental to the understanding of biodiversity patterns and processes. Yet, such data are strongly affected by sampling biases, mostly related to site accessibility. The understanding of these biases is therefore crucial in systematics, biogeography, and conservation. Here we present a novel approach for quantifying sampling effort and its impact on biodiversity knowledge, focusing on Africa. In contrast to previous studies assessing sampling completeness (percentage of species recorded in relation to predicted), we investigate whether the lack of knowledge of a site attracts scientists to visit these areas and collect samples of species. We then estimate the time required to sample 90% of the continent under a Weibull distributed biodiversity sampling rate and the number of sampling events required to record $ \ge $50% of the species. Using linear and spatial regression models, we show that previous sampling has been strongly influencing the resampling of areas, attracting repeated visits. This bias has existed for over two centuries, has increased in recent decades, and is most pronounced among mammals. It may take between 172 and 274 years, depending on the group, to achieve at least one sampling event per grid cell in the entire continent. Just one visit will, however, not be enough: in order to record $ \ge $50% of the current diversity, it will require at least 12 sampling events for amphibians, 13 for mammals, and 27 for birds. Our results demonstrate the importance of sampling areas that lack primary biodiversity data and the urgency with which this needs to be done. Current practice is insufficient to adequately classify and map African biodiversity; it can lead to incorrect conclusions being drawn from biogeographic analyses and can result in misleading and self-reinforcing conservation priorities. [Amphibians; birds; mammals; sampling bias; sampling gaps; Wallacean shortfall.].


Assuntos
Biodiversidade , Aves , África , Animais , Conservação dos Recursos Naturais , Mamíferos , Filogenia
3.
Ecography, v. 43, p. 328-339, fev. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3035

RESUMO

Factors driving the spatial configuration of centres of endemism have long been a topic of broad interest and debate. Due to different eco-evolutionary processes, these highly biodiverse areas may harbour different amounts of ancient and recently diverged organisms (paleo- and neo-endemism, respectively). Patterns of endemism still need to be measured at distinct phylogenetic levels for most clades and, consequently, little is known about the distribution, the age and the causes of such patterns. Here we tested for the presence of centres with high phylogenetic endemism (PE) in the highly diverse Neotropical snakes, testing the age of these patterns (paleo- or neo-endemism), and the presence of PE centres with distinct phylogenetic composition. We then tested whether PE is predicted by topography, by climate (seasonality, stability, buffering and relictualness), or biome size. We found that most areas of high PE for Neotropical snakes present a combination of both ancient and recently diverged diversity, which is distributed mostly in the Caribbean region, Central America, the Andes, the Atlantic Forest and on scattered highlands in central Brazil. Turnover of lineages is higher across Central America, resulting in more phylogenetically distinct PE centres compared to South America, which presents a more phylogenetically uniform snake fauna. Finally, we found that elevational range (topographic roughness) is the main predictor of PE, especially for paleo-endemism, whereas low paleo-endemism levels coincide with areas of high climatic seasonality. Our study highlights the importance of mountain systems to both ancient and recent narrowly distributed diversity. Mountains are both museums and cradles of snake diversity in the Neotropics, which has important implications for conservation in this region.

4.
Ecography ; 43: 328-339, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17664

RESUMO

Factors driving the spatial configuration of centres of endemism have long been a topic of broad interest and debate. Due to different eco-evolutionary processes, these highly biodiverse areas may harbour different amounts of ancient and recently diverged organisms (paleo- and neo-endemism, respectively). Patterns of endemism still need to be measured at distinct phylogenetic levels for most clades and, consequently, little is known about the distribution, the age and the causes of such patterns. Here we tested for the presence of centres with high phylogenetic endemism (PE) in the highly diverse Neotropical snakes, testing the age of these patterns (paleo- or neo-endemism), and the presence of PE centres with distinct phylogenetic composition. We then tested whether PE is predicted by topography, by climate (seasonality, stability, buffering and relictualness), or biome size. We found that most areas of high PE for Neotropical snakes present a combination of both ancient and recently diverged diversity, which is distributed mostly in the Caribbean region, Central America, the Andes, the Atlantic Forest and on scattered highlands in central Brazil. Turnover of lineages is higher across Central America, resulting in more phylogenetically distinct PE centres compared to South America, which presents a more phylogenetically uniform snake fauna. Finally, we found that elevational range (topographic roughness) is the main predictor of PE, especially for paleo-endemism, whereas low paleo-endemism levels coincide with areas of high climatic seasonality. Our study highlights the importance of mountain systems to both ancient and recent narrowly distributed diversity. Mountains are both museums and cradles of snake diversity in the Neotropics, which has important implications for conservation in this region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...