Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501826

RESUMO

This study introduces a novel controller based on a Reinforcement Learning (RL) algorithm for real-time adaptation of the stimulation pattern during FES-cycling. Core to our approach is the introduction of an RL agent that interacts with the cycling environment and learns through trial and error how to modulate the electrical charge applied to the stimulated muscle groups according to a predefined policy and while tracking a reference cadence. Instead of a static stimulation pattern to be modified by a control law, we hypothesized that a non-stationary baseline set of parameters would better adjust the amount of injected electrical charge to the time-varying characteristics of the musculature. Overground FES-assisted cycling sessions were performed by a subject with spinal cord injury (SCI AIS-A, T8). For tracking a predefined pedaling cadence, two closed-loop control laws were simultaneously used to modulate the pulse intensity of the stimulation channels responsible for evoking the muscle contractions. First, a Proportional-Integral (PI) controller was used to control the current amplitude of the stimulation channels over an initial parameter setting with predefined pulse amplitude, width and fixed frequency parameters. In parallel, an RL algorithm with a decayed-epsilon-greedy strategy was implemented to randomly explore nine different variations of pulse amplitude and width parameters over the same stimulation setting, aiming to adjust the injected electrical charge according to a predefined policy. The performance of this global control strategy was evaluated in two different RL settings and explored in two different cycling scenarios. The participant was able to pedal overground for distances over 3.5 km, and the results evidenced the RL agent learned to modify the stimulation pattern according to the predefined policy and was simultaneously able to track a predefined pedaling cadence. Despite the simplicity of our approach and the existence of more sophisticated RL algorithms, our method can be used to reduce the time needed to define stimulation patterns. Our results suggest interesting research possibilities to be explored in the future to improve cycling performance since more efficient stimulation cost dynamics can be explored and implemented for the agent to learn.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Humanos , Terapia por Estimulação Elétrica/métodos , Ciclismo/fisiologia , Estimulação Elétrica , Contração Muscular , Músculo Esquelético/fisiologia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5089-5093, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085848

RESUMO

Multi-contact epineural electrical stimulation is a technique that can be used to restore grip movements in people with complete tetraplegia. However, neural stimulation can induce undesired H-reflex. This reflex is known to induce a global lower recruitment threshold together with a steepest recruitment curve leading to a degraded selective response. In this study, during stimulation of the median nerve using a multi-contact cuff electrode, a H-reflex response was observed for one muscle (the pronator teres i.e. PT) among the five recorded. As both M-wave and H-wave were separately recorded, we compared the changes of recruitment, recruitment order and se-lectivity with and without the H-reflex and found that blocking the reflex would have enhance the selectivity and increase the range of the intensity amplitude while providing a higher level of gripping force. Thus, blocking H-reflex is an important issue to further enhance epineural multicontact selective stimulation.


Assuntos
Reflexo H , Nervo Mediano , Estimulação Elétrica , Antebraço , Humanos , Quadriplegia
3.
J Electromyogr Kinesiol ; 63: 102646, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35245812

RESUMO

Implanted stimulation restores hand movement in patients with complete spinal cord injuries. However, assessing the response by surface evoked EMG recordings is challenging because the forearm muscles are small and overlapping. Moreover, M-waves are dependent because they are induced by a single stimulation paradigm. We hypothesized that the M-waves of each muscle has a specific time-frequency signature and we have developed a method to reconstruct the recruitment curves using the energy of this specific time-frequency signature. Orthogonal wavelets are used to analyze individual M-waves. As the selection of the wavelet family and the determination of the time-frequency signature were not trivial, the impact of these choices was evaluated. First, we were able to discriminate the 2 relevant M-waves related to the studied muscles thanks to their specific time-frequency representations. Second, the Meyer family, compared to the Daubechies 2 and 4 families, is the most robust choice against the uncertainty of the time-frequency region definition. Finally, the results are consistent with the semi-quantitative evaluation performed with the MRC scoring. The Meyer wavelet transform combined with the definition of a specific area of interest for each individual muscle allows us to quantitatively and objectively evaluate the evoked EMG in a robust manner.


Assuntos
Músculo Esquelético , Traumatismos da Medula Espinal , Eletromiografia/métodos , Mãos , Humanos , Análise de Ondaletas
4.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35271086

RESUMO

Working towards the development of robust motion recognition systems for assistive technology control, the widespread approach has been to use a plethora of, often times, multi-modal sensors. In this paper, we develop single-sensor motion recognition systems. Utilising the peripheral nature of surface electromyography (sEMG) data acquisition, we optimise the information extracted from sEMG sensors. This allows the reduction in sEMG sensors or provision of contingencies in a system with redundancies. In particular, we process the sEMG readings captured at the trapezius descendens and platysma muscles. We demonstrate that sEMG readings captured at one muscle contain distinct information on movements or contractions of other agonists. We used the trapezius and platysma muscle sEMG data captured in able-bodied participants and participants with tetraplegia to classify shoulder movements and platysma contractions using white-box supervised learning algorithms. Using the trapezius sensor, shoulder raise is classified with an accuracy of 99%. Implementing subject-specific multi-class classification, shoulder raise, shoulder forward and shoulder backward are classified with a 94% accuracy amongst object raise and shoulder raise-and-hold data in able bodied adults. A three-way classification of the platysma sensor data captured with participants with tetraplegia achieves a 95% accuracy on platysma contraction and shoulder raise detection.


Assuntos
Ombro , Músculos Superficiais do Dorso , Adulto , Algoritmos , Eletromiografia , Humanos , Movimento , Ombro/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-35235517

RESUMO

OBJECTIVE: Complete tetraplegia can deprive a person of hand function. Assistive technologies may improve autonomy but needs for ergonomic interfaces for the user to pilot these devices still persist. Despite the paralysis of their arms, people with tetraplegia may retain residual shoulder movements. In this work we explored these movements as a mean to control assistive devices. METHODS: We captured shoulder movement with a single inertial sensor and, by training a support vector machine based classifier, we decode such information into user intent. RESULTS: The setup and training process take only a few minutes and so the classifiers can be user specific. We tested the algorithm with 10 able body and 2 spinal cord injury participants. The average classification accuracy was 80% and 84%, respectively. CONCLUSION: The proposed algorithm is easy to set up, its operation is fully automated, and achieved results are on par with state-of-the-art systems. SIGNIFICANCE: Assistive devices for persons without hand function present limitations in their user interfaces. Our work presents a novel method to overcome some of these limitations by classifying user movement and decoding it into user intent, all with simple setup and training and no need for manual tuning. We demonstrate its feasibility with experiments with end users, including persons with complete tetraplegia without hand function.


Assuntos
Tecnologia Assistiva , Traumatismos da Medula Espinal , Braço , Humanos , Movimento , Quadriplegia , Interface Usuário-Computador
6.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062492

RESUMO

Since the first Cybathlon 2016, when twelve teams competed in the FES bike race, we have witnessed a global effort towards the development of stimulation and control strategies to improve FES-assisted devices, particularly for cycling, as a means to practice a recreational physical activity. As a result, a set of technical notes and research paved the way for many other studies and the potential behind FES-assisted cycling has been consolidated. However, engineering research needs instrumented devices to support novel developments and enable precise assessment. Therefore, some researchers struggle to develop their own FES-assisted devices or find it challenging to implement their instrumentation using commercial devices, which often limits the implementation of advanced control strategies and the possibility to connect different types of sensor. In this regard, we hypothesize that it would be advantageous for some researchers in our community to enjoy access to an entire open-source FES platform that allows different control strategies to be implemented, offers greater adaptability and power capacity than commercial devices, and can be used to assist different functional activities in addition to cycling. Hence, it appears to be of interest to make our proprietary electrical stimulation system an open-source device and to prove its capabilities by addressing all the aspects necessary to implement a FES cycling system. The high-power capacity stimulation device is based on a constant current topology that allows the creation of biphasic electrical pulses with amplitude, width, and frequency up to 150 mA, 1000 µs, and 100 Hz, respectively. A mobile application (Android) was developed to set and modify the stimulation parameters of up to eight stimulation channels. A proportional-integral controller was implemented for cadence tracking with the aim to improve the overall cycling performance. A volunteer with complete paraplegia participated in the functional testing of the system. He was able to cycle indoors for 45 min, accomplish distances of more than 5 km using a passive cycling trainer, and pedal 2400 m overground in 32 min. The results evidenced the capacity of our FES cycling system to be employed as a cycling tool for individuals with spinal cord injury. The methodological strategies used to improve FES efficiency suggest the possibility of maximizing pedaling duration through more advanced control techniques.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Ciclismo , Estimulação Elétrica , Humanos , Masculino , Paraplegia
7.
J Neurotrauma ; 39(9-10): 627-638, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35029125

RESUMO

Two multi-contact epineural electrodes were placed around radial and median nerves of two subjects with high tetraplegia C4, American Spinal Injury Association Impairment Scale (AIS) A, group 0 of the International Classification for Surgery of the Hand in Tetraplegia. The purpose was to study the safety and capability of these electrodes to generate synergistic motor activation and functional movements and to test control interfaces that allow subjects to trigger pre-programmed stimulation sequences. The device consists of a pair of neural cuff electrodes and percutaneous cables with two extracorporeal connection cables inserted during a surgical procedure and maintained for 28 days. Continuity tests of the electrodes, selectivity of movements induced, motor capacities for grasping and gripping, conformity of the control order, tolerance, and acceptability were assessed. Neither of the two participants showed general and local comorbidity. Acceptability was optimal. None of the stimulation configurations generated contradictory movements. The success rate in task execution by the electro-stimulated hand exceeded the target of 50% (54% and 51% for patients 1 and 2, respectively). The compliance rate of the control orders in both patients was >90% using motion inertial measurement unit (IMU)-based detection and 100% using electromyography (EMG)-based detection in patient 1. These results support the relevance of neural stimulation of the tetraplegic upper limb with a more selective approach, using multi-contact epineural electrodes with nine and six contact points for the median and radial nerve respectively.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Terapia por Estimulação Elétrica/métodos , Eletromiografia , Mãos , Força da Mão/fisiologia , Humanos , Movimento/fisiologia , Quadriplegia
8.
World Neurosurg ; 157: 218-232.e14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547528

RESUMO

OBJECTIVE: Sacral anterior root stimulation (SARS) was developed 40 years ago to restore urinary and bowel functions to individuals with spinal cord injury. Mostly used to restore lower urinary tract function, SARS implantation is coupled with sacral deafferentation to counteract the problems of chronic detrusor sphincter dyssynergia and detrusor overactivity. In this article, we systematically review 40 years of SARS implantation and assess the medical added value of this approach in accordance with the PRISMA guidelines. We identified 4 axes of investigation: 1) impact on visceral functions, 2) implantation safety and device reliability, 3) individuals' quality of life, and 4) additional information about the procedure. METHODS: A systematic review was performed. Three databases were consulted: PubMed, EBSCOhost, and Pascal. A total of 219 abstracts were screened and 38 articles were retained for analysis (1147 implantations). RESULTS: The SARS technique showed good clinical results (85.9% of individuals used their implant for micturition and 67.9% to ease bowel movements) and improved individual quality of life. Conversely, several sources of complications were reported after implantation (e.g., surgical complications and failure). CONCLUSIONS: Despite promising results, a decline in implantations was observed. This decline can be linked to the complication rate, as well as to the development of new therapeutics (e.g., botulinum toxin) and directions for research (spinal cord stimulation) that may have an impact on people. Nevertheless, the lack of alternatives in the short-term suggests that the SARS implant is still relevant for the restoration of visceral functions after spinal cord injury.


Assuntos
Terapia por Estimulação Elétrica/métodos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/terapia , Eletrodos Implantados , Humanos , Medula Espinal , Raízes Nervosas Espinhais/fisiopatologia , Resultado do Tratamento
9.
Am J Phys Med Rehabil ; 100(12): 1148-1151, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596097

RESUMO

ABSTRACT: The purpose of this observational study was to report the experience of a 1-yr home training with functional electrical stimulation cycling of a person with T4 American Impairment Scale A paraplegia for 9 yrs, homebound due to the COVID-19 health crisis. The 40-yr-old participant had a three-phase training: V1, isometric stimulation; V2, functional electrical stimulation cycling for 3 sessions/wk; and V3, functional electrical stimulation cycling for 2-4 sessions/wk. Data on general and physical tolerance, health impact, and performance were collected. Borg Scale score relating to fatigue was 10.1 before training and 11.8 after training. The average score for satisfaction at the end of sessions was 8.7. Lean leg mass increased more than 29%, although total bone mineral density dropped by 1.6%. The ventilatory thresholds increased from 19.5 to 29% and the maximum ventilatory peak increased by 9.5%. Rosenberg's Self-esteem Scale score returned to its highest level by the end of training. For the only track event on a competition bike, the pilot covered a distance of 1607.8 m in 17 mins 49 secs. When functional electrical stimulation cycling training is based on a clear and structured protocol, it offers the person with paraplegia the opportunity to practice this activity recreationally and athletically. In times of crisis, this training has proven to be very relevant.


Assuntos
Ciclismo/fisiologia , Terapia por Estimulação Elétrica/métodos , Terapia por Exercício/métodos , Paraplegia/reabilitação , Telerreabilitação/métodos , Adulto , COVID-19/prevenção & controle , Estudos de Viabilidade , Humanos , Masculino , Paraplegia/fisiopatologia , SARS-CoV-2 , Estudos de Caso Único como Assunto , Resultado do Tratamento
10.
Sensors (Basel) ; 21(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283104

RESUMO

Functional electrical stimulation (FES) is a technique used in rehabilitation, allowing the recreation or facilitation of a movement or function, by electrically inducing the activation of targeted muscles. FES during cycling often uses activation patterns which are based on the crank angle of the pedals. Dynamic changes in their underlying predefined geometrical models (e.g., change in seating position) can lead to desynchronised contractions. Adaptive algorithms with a real-time interpretation of anatomical segments can avoid this and open new possibilities for the automatic design of stimulation patterns. However, their ability to accurately and precisely detect stimulation triggering events has to be evaluated in order to ensure their adaptability to real-case applications in various conditions. In this study, three algorithms (Hilbert, BSgonio, and Gait Cycle Index (GCI) Observer) were evaluated on passive cycling inertial data of six participants with spinal cord injury (SCI). For standardised comparison, a linear phase reference baseline was used to define target events (i.e., 10%, 40%, 60%, and 90% of the cycle's progress). Limits of agreement (LoA) of ±10% of the cycle's duration and Lin's concordance correlation coefficient (CCC) were used to evaluate the accuracy and precision of the algorithm's event detections. The delays in the detection were determined for each algorithm over 780 events. Analysis showed that the Hilbert and BSgonio algorithms validated the selected criteria (LoA: +5.17/-6.34% and +2.25/-2.51%, respectively), while the GCI Observer did not (LoA: +8.59/-27.89%). When evaluating control algorithms, it is paramount to define appropriate criteria in the context of the targeted practical application. To this end, normalising delays in event detection to the cycle's duration enables the use of a criterion that stays invariable to changes in cadence. Lin's CCC, comparing both linear correlation and strength of agreement between methods, also provides a reliable way of confirming comparisons between new control methods and an existing reference.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Algoritmos , Estimulação Elétrica , Marcha , Humanos
11.
J Neuroeng Rehabil ; 18(1): 11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478556

RESUMO

BACKGROUND: Rapid onset of muscular fatigue is still one of the main issues of functional electrical stimulation (FES). A promising technique, known as distributed stimulation, aims to activate sub-units of a muscle at a lower stimulation frequency to increase fatigue-resistance. Besides a general agreement on the beneficial effects, the great heterogeneity of evaluation techniques, raises the demand for a standardized method to better reflect the requirements of a practical application. METHODS: This study investigated the fatigue-development of 6 paralysed quadriceps muscles over the course of 180 dynamic contractions, evaluating different electrode-configurations (conventional and distributed stimulation). For a standardized comparison, fatigue-testing was performed at 40% of the peak-torque during a maximal evoked contraction (MEC). Further, we assessed the isometric torque for each electrode-configuration at different knee-extension-angles (70°-170°, 10° steps). RESULTS: Our results showed no significant difference in the fatigue-index for any of the tested electrode-configurations, compared to conventional-stimulation. We conjecture that the positive effects of distributed stimulation become less pronounced at higher stimulation amplitudes. The isometric torque produced at different knee-extension angles was similar for most electrode-configurations. Maximal torque-production was found at 130°-140° knee-extension-angle, which correlates with the maximal knee-flexion-angles during running. CONCLUSION: In most practical applications, FES is intended to initiate dynamic movements. Therefore, it is crucial to assess fatigue-resistance by using dynamic contractions. Reporting the relationship between produced torque and knee-extension-angle can help to observe the stability of a chosen electrode-configuration for a targeted range-of-motion. Additionally, we suggest to perform fatigue testing at higher forces (e.g. 40% of the maximal evoked torque) in pre-trained subjects with SCI to better reflect the practical demands of FES-applications.


Assuntos
Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/normas , Fadiga Muscular/fisiologia , Paralisia/reabilitação , Traumatismos da Medula Espinal/reabilitação , Adulto , Eletrodos , Humanos , Contração Isométrica/fisiologia , Masculino , Paralisia/etiologia , Paralisia/fisiopatologia , Músculo Quadríceps/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia
12.
Sensors (Basel) ; 21(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375762

RESUMO

Patients with central respiratory paralysis can benefit from diaphragm pacing to restore respiratory function. However, it would be important to develop a continuous respiratory monitoring method to alert on apnea occurrence, in order to improve the efficiency and safety of the pacing system. In this study, we present a preliminary validation of an acoustic apnea detection method on healthy subjects data. Thirteen healthy participants performed one session of two 2-min recordings, including a voluntary respiratory pause. The recordings were post-processed by combining temporal and frequency detection domains, and a new method was proposed-Phonocardiogram-Derived Respiration (PDR). The detection results were compared to synchronized pneumotachograph, electrocardiogram (ECG), and abdominal strap (plethysmograph) signals. The proposed method reached an apnea detection rate of 92.3%, with 99.36% specificity, 85.27% sensitivity, and 91.49% accuracy. PDR method showed a good correlation of 0.77 with ECG-Derived Respiration (EDR). The comparison of R-R intervals and S-S intervals also indicated a good correlation of 0.89. The performance of this respiratory detection algorithm meets the minimal requirements to make it usable in a real situation. Noises from the participant by speaking or from the environment had little influence on the detection result, as well as body position. The high correlation between PDR and EDR indicates the feasibility of monitoring respiration with PDR.


Assuntos
Eletrocardiografia , Respiração , Algoritmos , Apneia , Humanos , Monitorização Fisiológica , Processamento de Sinais Assistido por Computador
13.
J Neuroeng Rehabil ; 17(1): 66, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32429963

RESUMO

BACKGROUND: We hypothesized that a selective neural electrical stimulation of radial and median nerves enables the activation of functional movements in the paralyzed hand of individuals with tetraplegia. Compared to previous approaches for which up to 12 muscles were targeted through individual muscular stimulations, we focused on minimizing the number of implanted electrodes however providing almost all the needed and useful hand movements for subjects with complete tetraplegia. METHODS: We performed acute experiments during scheduled surgeries of the upper limb with eligible subjects. We scanned a set of multicontact neural stimulation cuff electrode configurations, pre-computed through modeling simulations. We reported the obtained isolated and functional movements that were considered useful for the subject (different grasping movements). RESULTS: In eight subjects, we demonstrated that selective stimulation based on multicontact cuff electrodes and optimized current spreading over the active contacts provided isolated, compound, functional and strong movements; most importantly 3 out of 4 had isolated fingers or thumb flexion, one patient performed a Key Grip, another one the Power and Hook Grips, and the 2 last all the 3 Grips. Several configurations were needed to target different areas within the nerve to obtain all the envisioned movements. We further confirmed that the upper limb nerves have muscle specific fascicles, which makes it possible to activate isolated movements. CONCLUSIONS: The future goal is to provide patients with functional restoration of object grasping and releasing with a minimally invasive solution: only two cuff electrodes above the elbow. Ethics Committee / ANSM clearance prior to the beginning of the study (inclusion period 2016-2018): CPP Sud Méditerranée, #ID-RCB:2014-A01752-45, first acceptance 10th of February 2015, amended 12th of January 2016. TRIAL REGISTRATION: (www.clinicaltrials.gov): #NCT03721861, Retrospectively registered on 26th of October 2018.


Assuntos
Terapia por Estimulação Elétrica/métodos , Nervo Mediano/cirurgia , Quadriplegia/terapia , Nervo Radial/cirurgia , Traumatismos da Medula Espinal/terapia , Adulto , Eletrodos Implantados , Antebraço/fisiopatologia , Mãos/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Quadriplegia/etiologia , Traumatismos da Medula Espinal/complicações , Adulto Jovem
14.
Front Neurosci ; 14: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140095

RESUMO

This paper presents a wireless distributed Functional Electrical Stimulation (FES) architecture. It is based on a set of, potentially heterogeneous, distributed stimulation and measurement units managed by a wearable controller. Through a proof-of-concept application, the characterization of the wireless network performances was assessed to check the adequacy of this solution with open-loop and closed-loop control requirements. We show the guaranteed time performances over the network through the control of quadriceps and hamstrings stimulation parameters based on the monitoring of the knee joint angle. Our solution intends to be a tool for researchers and therapists to develop closed-loop control algorithms and strategies for rehabilitation, allowing the design of wearable systems for a daily use context.

15.
Sensors (Basel) ; 19(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581489

RESUMO

This article introduces a novel approach for a functional electrical stimulation (FES) controller intended for FES-induced cycling based on inertial measurement units (IMUs). This study aims at simplifying the design of electrical stimulation timing patterns while providing a method that can be adapted to different users and devices. In most of studies and commercial devices, the crank angle is used as an input to trigger stimulation onset. We propose instead to use thigh inclination as the reference information to build stimulation timing patterns. The tilting angles of both thighs are estimated from one inertial sensor located above each knee. An IF-THEN rule algorithm detects, online and automatically, the thigh peak angles in order to start and stop the stimulation of quadriceps muscles, depending on these events. One participant with complete paraplegia was included and was able to propel a recumbent trike using the proposed approach after a very short setting time. This new modality opens the way for a simpler and user-friendly method to automatically design FES-induced cycling stimulation patterns, adapted to clinical use, for multiple bike geometries and user morphologies.

16.
Sensors (Basel) ; 19(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635286

RESUMO

Individuals who sustained a spinal cord injury often lose important motor skills, and cannot perform basic daily living activities. Several assistive technologies, including robotic assistance and functional electrical stimulation, have been developed to restore lost functions. However, designing reliable interfaces to control assistive devices for individuals with C4-C8 complete tetraplegia remains challenging. Although with limited grasping ability, they can often control upper arm movements via residual muscle contraction. In this article, we explore the feasibility of drawing upon these residual functions to pilot two devices, a robotic hand and an electrical stimulator. We studied two modalities, supra-lesional electromyography (EMG), and upper arm inertial sensors (IMU). We interpreted the muscle activity or arm movements of subjects with tetraplegia attempting to control the opening/closing of a robotic hand, and the extension/flexion of their own contralateral hand muscles activated by electrical stimulation. Two groups were recruited: eight subjects issued EMG-based commands; nine other subjects issued IMU-based commands. For each participant, we selected at least two muscles or gestures detectable by our algorithms. Despite little training, all participants could control the robot's gestures or electrical stimulation of their own arm via muscle contraction or limb motion.


Assuntos
Força da Mão/fisiologia , Contração Muscular/fisiologia , Quadriplegia/fisiopatologia , Adulto , Algoritmos , Braço/fisiologia , Estimulação Elétrica , Eletromiografia , Humanos , Masculino , Pessoa de Meia-Idade , Robótica , Ombro/fisiologia , Adulto Jovem
17.
Soins ; 64(837): 32-33, 2019.
Artigo em Francês | MEDLINE | ID: mdl-31345306

RESUMO

Neuroprostheses are medical devices which, interfaced with the nervous system, are able to provoke the artificial generation of nerve signals. These signals, correctly coded, can then be interpreted by target organs such as the muscles.


Assuntos
Transtornos Motores/fisiopatologia , Próteses Neurais , Humanos
18.
Sensors (Basel) ; 19(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108975

RESUMO

Inadequate staff behaviors in an operating room (OR) may lead to environmental contamination and increase the risk of surgical site infection. In order to assess this statement objectively, we have developed an approach to analyze OR staff behaviors using a motion tracking system. The present article introduces a solution for the assessment of individual displacements in the OR by: (1) detecting human presence and quantifying movements using a motion capture (MOCAP) system and (2) observing doors' movements by means of a wireless network of inertial sensors fixed on the doors and synchronized with the MOCAP system. The system was used in eight health care facilities sites during 30 cardiac and orthopedic surgery interventions. A total of 119 h of data were recorded and analyzed. Three hundred thirty four individual displacements were reconstructed. On average, only 10.6% individual positions could not be reconstructed and were considered undetermined, i.e., the presence in the room of the corresponding staff member could not be determined. The article presents the hardware and software developed together with the obtained reconstruction performances.


Assuntos
Técnicas Biossensoriais , Corpo Clínico/ética , Movimento/fisiologia , Tecnologia sem Fio , Comportamento/ética , Comportamento/fisiologia , Humanos , Salas Cirúrgicas
19.
J Neurosurg Spine ; : 1-11, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771756

RESUMO

OBJECTIVESpinal cord injuries (SCIs) result in loss of movement and sensory feedback, but also organ dysfunction. Nearly all patients with complete SCI lose bladder control and are prone to kidney failure if intermittent catheterization is not performed. Electrical stimulation of sacral spinal roots was initially considered to be a promising approach for restoring continence and micturition control, but many patients are discouraged by the need for surgical deafferentation as it could lead to a loss of sensory functions and reflexes. Nevertheless, recent research findings highlight the renewed interest in spinal cord stimulation (SCS). It is thought that synergic recruitment of spinal fibers could be achieved by stimulating the spinal neural networks involved in regulating physiological processes. Paradoxically, most of these recent studies focused on locomotor issues, while few addressed visceral dysfunction. This could at least partially be attributed to the lack of methodological tools. In this study, the authors aim to fill this gap by presenting a comprehensive method for investigating the potential of SCS to restore visceral functions in domestic pigs, a large-animal model considered to be a close approximation to humans.METHODSThis methodology was tested in 7 female pigs (Landrace pig breed, 45-60 kg, 4 months old) during acute experiments. A combination of morphine and propofol was used for anesthesia when transurethral catheterization and lumbosacral laminectomy (L4-S4) were performed. At the end of the operation, spinal root stimulation (L6-S5) and urodynamic recordings were performed to compare the evoked responses with those observed intraoperatively in humans.RESULTSNervous excitability was preserved despite long-term anesthesia (mean 8.43 ± 1.5 hours). Transurethral catheterization and conventional laminectomy were possible while motor responses (gluteus muscle monitoring) were unaffected throughout the procedure. Consistent detrusor (approximately 25 cm H2O) and sphincter responses were obtained, whereas spinal root stimulation elicited detrusor and external urethral sphincter co-contractions similar to those observed intraoperatively in humans.CONCLUSIONSPigs represent an ideal model for SCS studies aimed at visceral function investigation and restoration because of the close similarities between female domestic pigs and humans, both in terms of anatomical structure and experimental techniques implemented. This article provides methodological keys for conducting experiments with equipment routinely used in clinical practice.

20.
IEEE Trans Neural Syst Rehabil Eng ; 26(11): 2165-2178, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30475704

RESUMO

Nearly all spinal cord injured (SCI) individuals lose bladder control and are prone to kidney complications if intermittent catheterization is not applied. Electrical stimulation of the sacral anterior roots with an implantable neuroprosthesis is one means to restore continence and control micturition. However, only a small percentage of the SCI population benefits from this solution because of its drawbacks, e.g., section of sacral posterior roots with loss of spared sensitivity. There has been renewed interest in spinal cord stimulation in recent years, but most studies have focused on locomotion and only few have reported the impact on visceral functions. Moreover, even though the lumbosacral spinal cord is the location of many pre-cabled neural networks (involved in locomotion, bladder, and bowel management), the functional selectivity of spinal stimulations has never been investigated in detail. Here, we present: 1) a methodology designed to study lumbosacral epispinal-intradural stimulation selectivity; 2) preliminary results assessing the impact of epispinal stimulation on bladder and bowel functions in two domestic pigs; and 3) a comparison of these visceral responses with abdominal and lower limb activities. Our experiments resulted in selective bladder and rectal responses, i.e., without hind paw responses, thus reaffirming the rehabilitation potential of spinal cord stimulation.


Assuntos
Região Lombossacral/fisiologia , Próteses Neurais , Estimulação da Medula Espinal/métodos , Animais , Dura-Máter/fisiologia , Eletromiografia , Trato Gastrointestinal/fisiologia , Rede Nervosa/fisiologia , Projetos Piloto , Reto/fisiologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/reabilitação , Raízes Nervosas Espinhais/fisiologia , Suínos , Bexiga Urinária/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...