Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 30(1): 89-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34842222

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) is contagious, producing respiratory tract infection, caused by a newly discovered coronavirus. Its death toll is too high, and early diagnosis is the main problem nowadays. Infected people show a variety of symptoms such as fatigue, fever, tastelessness, dry cough, etc. Some other symptoms may also be manifested by radiographic visual identification. Therefore, Chest X-Rays (CXR) play a key role in the diagnosis of COVID-19. METHODS: In this study, we use Chest X-Rays images to develop a computer-aided diagnosis (CAD) of the disease. These images are used to train two deep networks, the Convolution Neural Network (CNN), and the Long Short-Term Memory Network (LSTM) which is an artificial Recurrent Neural Network (RNN). The proposed study involves three phases. First, the CNN model is trained on raw CXR images. Next, it is trained on pre-processed CXR images and finally enhanced CXR images are used for deep network CNN training. Geometric transformations, color transformations, image enhancement, and noise injection techniques are used for augmentation. From augmentation, we get 3,220 augmented CXRs as training datasets. In the final phase, CNN is used to extract the features of CXR imagery that are fed to the LSTM model. The performance of the four trained models is evaluated by the evaluation techniques of different models, including accuracy, specificity, sensitivity, false-positive rate, and receiver operating characteristic (ROC) curve. RESULTS: We compare our results with other benchmark CNN models. Our proposed CNN-LSTM model gives superior accuracy (99.02%) than the other state-of-the-art models. Our method to get improved input, helped the CNN model to produce a very high true positive rate (TPR 1) and no false-negative result whereas false negative was a major problem while using Raw CXR images. CONCLUSIONS: We conclude after performing different experiments that some image pre-processing and augmentation, remarkably improves the results of CNN-based models. It will help a better early detection of the disease that will eventually reduce the mortality rate of COVID.


Assuntos
COVID-19 , Aprendizado Profundo , Teste para COVID-19 , Computadores , Humanos , SARS-CoV-2
2.
Int J Biomed Imaging ; 2021: 5513500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234822

RESUMO

Brain tumor is a deadly neurological disease caused by an abnormal and uncontrollable growth of cells inside the brain or skull. The mortality ratio of patients suffering from this disease is growing gradually. Analysing Magnetic Resonance Images (MRIs) manually is inadequate for efficient and accurate brain tumor diagnosis. An early diagnosis of the disease can activate a timely treatment consequently elevating the survival ratio of the patients. Modern brain imaging methodologies have augmented the detection ratio of brain tumor. In the past few years, a lot of research has been carried out for computer-aided diagnosis of human brain tumor to achieve 100% diagnosis accuracy. The focus of this research is on early diagnosis of brain tumor via Convolution Neural Network (CNN) to enhance state-of-the-art diagnosis accuracy. The proposed CNN is trained on a benchmark dataset, BR35H, containing brain tumor MRIs. The performance and sustainability of the model is evaluated on six different datasets, i.e., BMI-I, BTI, BMI-II, BTS, BMI-III, and BD-BT. To improve the performance of the model and to make it sustainable for totally unseen data, different geometric data augmentation techniques, along with statistical standardization, are employed. The proposed CNN-based CAD system for brain tumor diagnosis performs better than other systems by achieving an average accuracy of around 98.8% and a specificity of around 0.99. It also reveals 100% correct diagnosis for two brain MRI datasets, i.e., BTS and BD-BT. The performance of the proposed system is also compared with the other existing systems, and the analysis reveals that the proposed system outperforms all of them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...