Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6649, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095265

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are often formed when organic substances do not burn completely. This study evaluates the non-carcinogenic and cumulative risks associated with PAHs levels by testing blood and urine samples in kitchen workers and residents near restaurants in Shiraz, Iran. Metabolites of PAH in the urine samples as well as clinical parameters in the blood samples were measured. The non-carcinogenic and cumulative risk assessments from exposure of the study groups to PAH metabolites were also evaluated. The highest average concentrations of PAH metabolites were related to kitchen workers (2126.7 ng/g creatinine (ng/g cr)). The metabolites of 1-Hydroxypyrene (1-OHP) and 9-Phenanthrene (9-OHPhe) had the highest and lowest mean concentrations, respectively. A direct correlation was observed between the levels of PAH metabolites with malondialdehyde (MDA) and total antioxidation capacity (TAC) levels (p < 0.05). Hazard Index (HIi) was obtained less than one (HIi < 1), indicating low-risk negative health impacts on the target groups. Nevertheless, conducting more studies to determine the health status of these people is quite evident.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Restaurantes , Medição de Risco , Monitoramento Ambiental , Biomarcadores/urina
3.
Sci Rep ; 12(1): 8254, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585178

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances that have ubiquitous presence in water, air, soil, and sediment environments, posing serious environmental risks. The present study aimed to investigate the concentrations of urinary PAHs and their health effects in individuals living near restaurants via a health risk assessment analysis. This cross-sectional study was performed on 57 people living near restaurants and 30 individuals as the control group. Five urinary metabolites of PAHs were monitored. In order to evaluate the effects of the urinary metabolites of PAHs on Malondialdehyde (MDA) concentration, Total Anti-oxidation Capacity (TAC) in urine samples, and C-Reactive Protein (CRP) in serum samples, regression model was used by considering the effects of the possible confounding factors. Non-carcinogenic health risk was calculated, as well. The median concentration of urinary PAHs was 1196.70 and 627.54 ng/g creatinine in the people living near restaurants and the control group, respectively. Among the metabolites, the lowest and highest mean concentrations were related to 9-OHPhe and 1-OHP, respectively in the two study groups. Moreover, PAHs were significantly associated with MDA level and TAC (p < 0.05). Hazard Quotient (HQ) and Hazard Index (HI) were less than 1. Long-term studies are required to determine the actual health effects by identifying the sources of PAHs emission and to find ways to decrease the production of these compounds.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Estudos Transversais , Monitoramento Ambiental , Humanos , Irã (Geográfico) , Hidrocarbonetos Policíclicos Aromáticos/análise , Restaurantes , Medição de Risco
4.
Environ Monit Assess ; 194(4): 285, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298709

RESUMO

Polycyclic aromatic hydrocarbons are environmental pollutants caused by the incomplete combustion of organic matter. The aim of this study was to investigate the concentration of urinary PAHs and their health effects in individuals living near restaurants. This cross-sectional study was done on 57 individuals who were living near 36 restaurants, and 30 individuals as the control group. Five urinary metabolites of PAHs (1-OH pyrene, 1-OH naphthalene, 2-OH naphthalene, 2-OH fluorine, and 9-OH phenanthrenen) were monitored. The total anti-oxidation capacity (TAC), malondialdehyde (MDA), C-reactive protein (CRP), and creatinine were also measured. The mean concentration of the sum of urinary PAHs (ΣOH-PAHs) was 1973.7, and 1687.61 ng/g creatinine in people living near restaurants and control group, respectively. Among the metabolites, the highest mean concentration was related to 1-OH Pyrene in the two study groups. In the individuals living near restaurants, the concentration of PAH metabolites was directly related to MDA and TAC (p < 0.05 for both). The present study findings revealed no significant correlation between PAH metabolites and CRP in the two study groups (P > 0.05). People living near restaurants are more exposed to components in cooking fumes, which may adversely affect their health. Further researches are required to elucidate the effect of PAHs exposure on these individuals' health status.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Estudos Transversais , Monitoramento Ambiental , Humanos , Irã (Geográfico) , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Restaurantes
5.
Water Sci Technol ; 83(12): 3110-3122, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34185703

RESUMO

Between the countless chemical substances applied in agriculture, 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide is considered as a toxic and carcinogenic pollutant which is difficult to remove from water due to its biological and chemical stability and high solubility. The goal of this study was photocatalytic degradation of 2,4-D, using Ag3PO4/TiO2 nanoparticles under visible light. The Ag3PO4/TiO2 nanoparticles were characterized using XRD, FESEM and EDS analysis to investigate its crystal structure and elemental compounds. The effect of operating parameters such as pH, contact time, catalyst dose, and initial concentration of herbicide on the efficiency of the process was studied. Increasing the pH and initial concentration of herbicide led to the reduction of the efficiency of removing the herbicide, while increasing contact time and catalyst dose increased the efficiency. The best result (98.4% removal efficiency) was achieved at pH = 3, 1 g/L catalyst dose, 60 min contact time, and 10 mg/L initial concentration of 2,4-D. According to the results, 2,4-D removal efficiency with Ag3PO4/TiO2 photocatalyst reached 96.1% from 98.4% after 5 cycles of reaction. The pseudo-first-order kinetics was the best fit for the 2,4-D degradation by Ag3PO4/TiO2 with correlation coefficients (R2 = 0.9945). The results demonstrated that the photocatalytic process using Ag3PO4/TiO2 nanoparticles in the presence of visible light had a relatively good efficiency in removing 2,4-D. Moreover, Ag3PO4/TiO2 can be used as a reusable photocatalyst for the degradation of such toxins from polluted water and wastewater.


Assuntos
Herbicidas , Nanopartículas , Ácido 2,4-Diclorofenoxiacético , Catálise , Cinética , Luz , Prata , Termodinâmica , Titânio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA