Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 26(2): 128-136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36742134

RESUMO

Cytokine-mediated cancer therapy has the potential to enhance immunotherapeutic approaches and cancer elimination plans through the endowing of the immune system by providing improved anticancer immunity. Despite the encouraging pioneer studies on interleukins (ILs), the influence of ILs-originated therapeutics is still restricted by a class of potent immunoregulatory cytokines, systemic dose-limiting toxicities, ILs pleiotropy, and administration issues. During previous years, the area of transferring genes encoding immunostimulatory ILs was fundamentally widened to overcome these challenges and expedite ILs-based tumor regression. Numerous viral and non-viral delivery systems are currently available to act as crucial elements of the gene therapy toolbox. Moreover, cell-based cancer therapies are recruiting MSCs in the role of versatile gene delivery platforms to design one of the promising therapeutic approaches. These formulated gene carrier systems can provide possible alternatives to diminish dose-limiting adverse effects, promote administration, and enhance the therapeutic activity of ILs-derived treatment modalities in cancer treatment. This review provides a discussion on the advances of ILs gene delivery systems while focusing on the developing platforms in preclinical cancer immunogene therapy studies.

2.
Biotechnol Prog ; 37(4): e3175, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34013634

RESUMO

Interleukin 12 (IL-12) is considered as an important molecule for cancer immunotherapy with significant roles in hindering tumor activity, mostly mediated by tumor-associated macrophages and anti-angiogenic factors. Mesenchymal stem cells (MSCs) have been come out as promising carriers to increase the accumulation of drug/gene in tumor sites. As a vehicle, MSCs have various advantages, including tumor-specific propensity and migratory ability; however, they have limited transfection efficiency, compared to other cells. In this study, we introduced a novel delivery system based on poly-(amidoamine) (PAMAM) (G5) to deliver a plasmid encoding IL-12 to MSCs. Initially, 30% of the amine surface of PAMAM was substituted by 10-bromodecanoic acid. Then, the low molecular weight of protamine peptide was conjugated to PAMAM and PAMAM-alkyl with N-succinimidyl 3-(2-pyridyldithio) propionate as a linker. Physicochemical properties of this modified PAMAM were evaluated, including size and surface charge, toxicity, transfection efficiency to deliver reporter and IL-12 genes into MSCs and finally the migration potential of the engineered stem cells into cancer and normal cell lines (HepG2 and NIH/3 T3). The results showed that alkyl-peptide modified PAMAM with low toxicity had a higher potential to deliver green fluorescent protein and IL-12 genes to stem cells, than PMAMAM, PAMAM-alkyl and PAMAM-peptide. These engineered stem cells had a greater ability to migrate to cancer cells than normal cells. It can be concluded that engineered stem cells containing the IL-12 gene can be considered as an efficient cell carrier for cancer immunotherapy. Further clinical studies are needed to confirm these results.


Assuntos
Dendrímeros , Neoplasias , Dendrímeros/química , Interleucina-12/genética , Peso Molecular , Neoplasias/terapia , Peptídeos/genética , Plasmídeos/genética , Protaminas/genética , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...