Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37175341

RESUMO

The increasing bacterial resistance and negative impacts of the present antibacterial agents have led to the search for novel antibacterial agents. This study focuses on the influence of synthetic methods on the aggregation stability and antibacterial activity of gold nanoparticles (NPs) prepared by using sodium citrate as a reducing and capping agent against Staphylococcus aureus (S. aureus). Gold NPs were synthesized using a simple and rapid sonochemical method and compared to gold NPs synthesized using a reduction method. The physicochemical features of gold NPs were characterized using UV-vis, XRD, TEM, and zeta potential, and the TEM results showed that the sonochemical method produced monodispersed spherical gold NPs with an average diameter of 18.5 nm, while the reduction method produced NPs with an average diameter of around 20 nm. The sonochemical method produced gold NPs with excellent stability (-48 mV) compared to the reduction method (-21 mV). The gold NPs with high stability also exhibited strong antibacterial activity against S. aureus present in water, indicating their potential use in water purification processes to limit bacterial growth. The outcomes of this research are expected to significantly contribute to the creation of new drugs by paving the way for the development of novel strategies to combat pathogens using highly stable gold nanoparticles. These gold NPs, produced via the sonochemical method, have the potential to be employed as beneficial nanocompounds in the medical industry.


Assuntos
Nanopartículas Metálicas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Nanopartículas Metálicas/química , Ouro/farmacologia , Ouro/química , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
2.
Ultrason Sonochem ; 95: 106371, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934677

RESUMO

The incorporation of additional functional groups such as bismuth nanoparticles (Bi NPs) into magnetite nanoparticles (Fe3O4 NPs) is critical for their properties modification, stabilization, and multi-functionalization in biomedical applications. In this work, ultrasound has rapidly modified iron oxide (Fe3O4) NPs via incorporating their surface through coating with Bi NPs, creating unique Fe3O4@Bi composite NPs. The Fe3O4@Bi nanocomposites were synthesized and statistically optimized using an ultrasonic probe and response surface methodology (RSM). A face-centered central composite design (FCCD) investigated the effect of preparation settings on the stability, size, and size distribution of the nanocomposite. Based on the numerical desirability function, the optimized preparation parameters that influenced the responses were determined to be 40 ml, 5 ml, and 12 min for Bi concentration, sodium borohydride (SBH) concentration, and sonication time, respectively. It was found that the sonication time was the most influential factor in determining the responses. The predicted values for the zeta potential, hydrodynamic size, and polydispersity index (PDI) at the highest desirability solution (100%) were -45 mV, 122 nm, and 0.257, while their experimental values at the optimal preparation conditions were -47.1 mV, 125 nm, and 0.281, respectively. Dynamic light scattering (DLS) result shows that the ultrasound efficiently stabilized and functionalized Fe3O4NPs following modification to Fe3O4@Bi NPs, improved the zeta potential value from -33.5 to -47.1 mV, but increased the hydrodynamic size from 98 to 125 nm. Energy dispersive spectroscopy (EDX) validated the elemental compositions and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of Sumac (Rhus coriaria) compounds in the composition of the nanocomposites. The stability and biocompatibility of Fe3O4@Bi NPs were improved by using the extract solution of the Sumacedible plant. Other physicochemical results revealed that Fe3O4NPs and Fe3O4@Bi NPs were crystalline, semi-spherical, and monodisperse with average particle sizes of 11.7 nm and 19.5 nm, while their saturation magnetization (Ms) values were found to be 132.33 emu/g and 92.192 emu/g, respectively. In vitro cytotoxicity of Fe3O4@Bi NPs on the HEK-293 cells was dose- and time-dependent. Based on our findings, the sonochemical approach efficiently produced (and RSM accurately optimized) an extremely stable, homogeneous, and biocompatible Fe3O4@Bi NPs with multifunctional potential for various biomedical applications.


Assuntos
Bismuto , Nanopartículas de Magnetita , Humanos , Células HEK293 , Ultrassom , Fenômenos Químicos , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/química
3.
Photodiagnosis Photodyn Ther ; 42: 103312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36731732

RESUMO

AuNPs-mediated photothermal therapy (PTT) is gaining popularity in both laboratory research and medical applications. It has proven clear advantages in breast cancer therapy over conventional thermal ablation because of its easily-tuned features of irradiation light with inside hyperthermia ability. Notwithstanding this significant progress, the therapeutic potential of AuNPs-mediated PTT in cancer treatments is still impeded by several challenges, including inherent non-specificity, low photothermal conversion effectiveness, and the limitation of excitation light tissue penetration. Given the rapid progress of AuNPs-mediated PTT, we present a comprehensive overview of significant breakthroughs in the recent advancements of AuNPs for PTT, focusing on breast cancer cells. With the improvement of chemical synthesis technology, AuNPs of various sizes and shapes with desired properties can be synthesized, allowing breast cancer targeting and treatment. In this study, we summarized the different sizes and features of four major types of AuNPs in this review: Au nanospheres, Au nanocages, Au nanoshells, and Au nanorods, and explored their benefits and drawbacks in PTT. We also discussed the diagnostic, bioconjugation, targeting, and cellular uptake of AuNPs, which could improve the performance of AuNP-based PTT. Besides that, potential challenges and future developments of AuNP-mediated PTT for clinical applications are discussed. AuNP-mediated PTT is expected to become a highly promising avenue in cancer treatment in the near future.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Fotoquimioterapia , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fotoquimioterapia/métodos , Ouro/química , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Fototerapia , Linhagem Celular Tumoral
4.
Biochim Biophys Acta Gen Subj ; 1867(4): 130318, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740000

RESUMO

BACKGROUND: Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. SCOPE OF REVIEW: This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. MAJOR CONCLUSIONS: In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. GENERAL SIGNIFICANCE: Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.


Assuntos
Ouro , Nanopartículas Metálicas , Raios X , Método de Monte Carlo , Simulação por Computador
5.
Materials (Basel) ; 15(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36013609

RESUMO

Embedding nanoparticles (NPs) in the buffer layer of bulk heterojunction polymer solar cells (BHJ PSCs) excites the surface plasmonic polaritons and enhances the pathlength of the light in the solar cells. On the other hand, embedding NPs in the active layer significantly improves absorption and increases the production of electron-hole (e-h) pairs in BHJ PSCs. Increasing the volume ratio of NPs embedded in BHJ PSCs enables the direct interfacing of the NPs with the active layer, which then serves as a charge recombination center. Therefore, this study integrates the aforementioned phenomena by exploiting the effects of embedding plasmonic Au@Ag NPs in the buffer and active layers of PSC and then determining the optimum volume ratio of Au@Ag NPs. The results show the absorption is increased across the 350-750 nm wavelength region, and the PCE of the device with embedded Au@Ag in two locations is enhanced from 2.50 to 4.24%, which implies a 69.6% improvement in the PCE in comparison to the reference cell. This improvement is contributed by the combined localized surface plasmon resonance (LSPR) effects of multi-positional Au@Ag NPs, spiky durian-shaped morphology of Au@Ag NPs, and optimized volume ratio of Au@Ag NPs embedded in the PEDOT: PSS and PTB7:PC71BM layers.

6.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806405

RESUMO

Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility. AuNPs have physical features that distinguish them from bulk materials, small molecules and other nanoscale particles. Their unique combination of characteristics is just now being fully realized in various biomedical applications. In this review, we focus on the research accomplishments and new opportunities in this field, and we describe the rising developments in the use of monodisperse AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications, and future theranostic applications. Moving forward, we also consider the possible development of functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate that as research advances, flexible AuNPs will become a crucial platform for medical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Portadores de Fármacos , Nanopartículas Metálicas/uso terapêutico
7.
Photodiagnosis Photodyn Ther ; 38: 102801, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35288323

RESUMO

BACKGROUND/AIMS: Silica nanoparticles (SiNPs) have been promising vehicles for drug delivery. Cichorium Pumilum (CP), a natural photosensitizer (PS), has been reported to have many useful effects in cancer treatment. However, the poor water solubility and its low bioavailability have confined its use as a suitable photosensitizer for photodynamic therapy. Therefore, a subtle approach is required to overcome these drawbacks. MATERIALS AND METHODS: We have synthesized a silica nanoparticles loaded with Cichorium Pumilum. The nanoparticles structural morphologies have been charectrized by Transmission Electron Microscopy (TEM). The cytotoxicity for different concentrations of naked and encapsulated CP was evaluated. Moreover, the optimal concentration of naked and encapsulated CP with exposure time to a light (Maximum intensity at 350nm ∼0.27mW/cm2) required to eliminate the used cells (Osteosarcoma cells) were also measured. RESULTS: The results showed that encapsulated CP in SiNPs exhibited relatively higher efficacy than the naked CP by + 157.14 % of exposure time efficacy and + 49.45% of concentration efficacy, and encapsulated CP was also confirmed to be effective in eradicating osteosarcoma cells. CONCLUSION: The engineered silica nanoparticles loaded with CP enhanced the photodynamic therapy by increasing the CP bioavailability.


Assuntos
Asteraceae , Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Fotoquimioterapia , Humanos , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Dióxido de Silício/química
8.
Nanotechnology ; 33(8)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34753124

RESUMO

Upconversion (UC) of lanthanide-doped nanostructure has the unique ability to convert low energy infrared (IR) light to high energy photons, which has significant potential for energy conversion applications. This review concisely discusses the basic concepts and fundamental theories of lanthanide nanostructures, synthesis techniques, and enhancement methods of upconversion for photovoltaic and for near-infrared (NIR) photodetector (PD) application. In addition, a few examples of lanthanide-doped nanostructures with improved performance were discussed, with particular emphasis on upconversion emission enhancement using coupling plasmon. The use of UC materials has been shown to significantly improve the NIR light-harvesting properties of photovoltaic devices and photocatalytic materials. However, the inefficiency of UC emission also prompted the need for additional modification of the optical properties of UC material. This improvement entailed the proper selection of the host matrix and optimization of the sensitizer and activator concentrations, followed by subjecting the UC material to surface-passivation, plasmonic enhancement, or doping. As expected, improving the optical properties of UC materials can lead to enhanced efficiency of PDs and photovoltaic devices.

9.
Photodiagnosis Photodyn Ther ; 34: 102287, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33836276

RESUMO

The 2019 novel coronavirus (2019-nCoV; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has witnessed a rapid and global proliferation since its early identification in patients with severe pneumonia in Wuhan, China. As of 27th May 2020, 2019-nCoV cases have risen to >5 million, with confirmed deaths of 350,000. However, Coronavirus disease (COVID-19) diagnostic and treatment measures are yet to be fully unraveled, given the novelty of this particular coronavirus. Therefore, existing antiviral agents used for severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) were repurposed for COVID-19, taking their biological features into consideration. This study provides a concise review of the current and emerging detection and supervision technologies for SARS-CoV-2, which is the viral etiology of COVID19, and their performance characteristics, with emphasis on the novel Nano-based diagnostic tests (protein corona sensor array and magnetic levitation) and treatment measures (treatment protocols based on nano-silver colloids) for COVID-19.


Assuntos
COVID-19 , Nanopartículas , Fotoquimioterapia , China , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , SARS-CoV-2
10.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922347

RESUMO

Sonochemistry uses ultrasound to improve or modify chemical reactions. Sonochemistry occurs when the ultrasound causes chemical effects on the reaction system, such as the formation of free radicals, that intensify the reaction. Many studies have investigated the synthesis of nanomaterials by the sonochemical method, but there is still very limited information on the detailed characterization of these physicochemical and morphological nanoparticles. In this comprehensive review, recent advances in the sonochemical synthesis of nanomaterials based on iron oxide nanoparticles (Fe3O4NP), gold nanoparticles (AuNP) and iron oxide-coated gold nanoparticles (Fe3O4@Au NP) are discussed. These materials are the most studied materials for various applications, such as medical and commercial uses. This review will: (1) address the simple processing and observations on the principles of sonochemistry as a starting point for understanding the fundamental mechanisms, (2) summarize and review the most relevant publications and (3) describe the typical shape of the products provided in sonochemistry. All in all, this review's main outcome will provide a comprehensive overview of the available literature knowledge that promotes and encourages future sonochemical work.

12.
Photodiagnosis Photodyn Ther ; 33: 102177, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33429101

RESUMO

The production of nanomaterials integrating diagnostic and therapeutic roles within one nanoplatform is important for medical applications. Such theranostics nanoplatforms could provide information on imaging, accurate diagnosis and, at the same time, could eradicate cancer cells. Fe3O4@Au core@shell nanoparticles (Fe3O4@AuNPs) have gained broad attention due to their unique innovations in magnetic resonance imaging (MRI) and photothermal therapy (PTT). Seed-mediated growth procedures were used to produce the Fe3O4@AuNPs. In these processes, complicated surface modifications, resulted in unsatisfactory properties. This work used the ability of the sonochemical approach to synthesize highly efficient theranostics agent Fe3O4@AuNPs with a size of approximately 22 nm in 5 min. The inner core of Fe3O4 acts as an MRI agent, whereas the photothermal effect stands accomplished by near-infrared absorption of the gold shell (Au shell), which results in the eradication of cancer cells. We have shown that Fe3O4@AuNPs have great biocompatibility and no major cytotoxicity has been identified. Relaxivity value (r2) of synthesized Fe3O4@Au NPs, measured at 233 mM-1s-1, is significantly higher than those reported previously. The as-synthesized NPs have shown substantial photothermal ablation ability on MCF-7 in vitro under near-infrared laser irradiation. Consequently, Fe3O4@AuNPs synthesized in this study have great potential as an ideal candidate for MR imaging and PTT.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Fotoquimioterapia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Ouro , Humanos , Imageamento por Ressonância Magnética , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Fototerapia , Medicina de Precisão , Nanomedicina Teranóstica
13.
Sci Rep ; 10(1): 14231, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859972

RESUMO

Agar have long been used as a growth media for plants. Here, we made agar media with embedded fluidic channels to study the effect of exposure to nutrient solution on root growth and pull-out force. Black Eye bean (Vigna Unguiculata) and Mung bean (Vigna Radiata) were used in this study due to their rapid root development. Agar media were fabricated using casting process with removable cores to form channels which were subsequently filled with nutrient solution. Upon germination, beans were transplanted onto the agar media and allowed to grow. Pull-out force was determined at 96, 120 and 144 h after germination by applying a force on the hypocotyl above the gel surface. The effect of nutrients was investigated by comparing corresponding data obtained from control plants which have not been exposed to nutrient solution. Pull-out force of Black Eye bean plantlets grown in agar with nutrient solution in channels was greater than those grown in gel without nutrients and was 110% greater after 144 h of germination. Pull-out force of Mung bean plantlets grown in agar with and without nutrient solution was similar. Tap root lengths of Black Eye bean and Mung Bean plantlets grown in agar with nutrient solution are shorter than those grown without nutrient.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nutrientes/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Ágar/farmacologia , Cultura em Câmaras de Difusão , Germinação/efeitos dos fármacos , Fenômenos Mecânicos , Nutrientes/metabolismo , Vigna/crescimento & desenvolvimento
14.
Sci Rep ; 10(1): 10793, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612098

RESUMO

A highly stable and magnetized citric acid (CA)-functionalized iron oxide aqueous colloidal solution (Fe3O4@CA) was synthesized by using a simple and rapid method of one-step co-participation via a chemical reaction between Fe3+ and Fe2+ in a NaOH solution at 65 °C, followed by CA addition to functionalize the Fe3O4 surface in 25 min. The NPs were synthesized at lower temperatures and shortened time compared with conventional methods. Surface functionalization is highly suggested because bare Fe3O4 nanoparticles (Fe3O4 NPs) are frequently deficient due to their low stability and hydrophilicity. Hence, 19 nm-sized Fe3O4 NPs coated with CA (Fe3O4@CA) were synthesized, and their microstructure, morphology, and magnetic properties were characterized using X-ray diffraction, transmission electron microscopy, Zeta potential, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. CA successfully modified the Fe3O4 surface to obtain a stabilized (homogeneous and well dispersed) aqueous colloidal solution. The Zeta potential value of the as-prepared Fe3O4@CA increases from - 31 to - 45 mV. These CA-functionalized NPs with high magnetic saturation (54.8 emu/g) show promising biomedical applications.

15.
Photodiagnosis Photodyn Ther ; 31: 101896, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585402

RESUMO

BACKGROUND: Theranostic agents can combine photosensitizers and contrast agents into a single unit for photothermal therapy (PTT) and magnetic resonance imaging (MRI). The possibility of treating and diagnosing malignant cancers without any ionizing radiation could become an option. This study investigates the theranostic potential of Fe3O4 nanoparticles (IONs) for the diagnosis and treatment of cancer by developing a single integrated nanoprobe. METHODS: Oleylamin-coated IONs (ION-Ol) were synthesized and surface of the IONs was modified using protoporphyrin (PP) and trastuzumab (TZ) to develop the TZ-conjugated SPION-porphyrin [ION-PP-TZ]. The structure, morphology, size, and cytotoxicity of all samples were investigated using Fourier-transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), WST-1 assay, respectively. In addition to MRI and in vitro laser irradiation (808 nm, 200 mW) to determine the r2 values and photothermal ablation. RESULTS: The sizes of monodispersed nanoparticles were measured in rang 5.74-7.17 nm. No cytotoxicity was observed after incubating MCF 7 cells under various Fe concentrations of nanoparticles and theranostic agents. The transverse relaxation time of the protoporphyrin conjugated to IONs (52.32 mM-1s-1) exceeded that of ION-Ol and TZ-conjugated ION-PP. In addition, the in vitro photothermal ablation of ION-PP-TZ revealed a 74 % MCF 7 cell reduction after 10 min of at the highest Fe concentration (1.00 mg Fe/mL). CONCLUSIONS: In summary, the water-soluble ION-PP-TZ is a promising bimodal agent for the diagnosis and treatment of human epidermal growth factor receptor 2-positive breast cancer cells using a T2 MRI contrast agent and photothermal therapy.


Assuntos
Neoplasias da Mama , Nanopartículas de Magnetita , Fotoquimioterapia , Porfirinas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Óxidos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
16.
Ultrason Sonochem ; 64: 104856, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31889660

RESUMO

Optimization of sonochemical method of functionalizing a Silane coupling agent, Amino-Silane on Superparamagnetic Iron Oxide Nanoparticles (SPION) using Central Composite Design is reported. The Amino-Silane is grafted on the SPION in an iced bath environment using a Vibra-Cell 20 kHz ultrasonic irradiator with 13 mm diameter horn. Throughout the experiment amplitude of the ultrasonic device is maintained at 47%. The percentage atomic compositions of various APTES elements which bind to the SPION due to the ultrasonic irradiation were determined using X-ray photoelectron spectrometer (XPS). The influence of ultrasonic irradiation time and amount of APTES required for facile, rapid and effective functionalization of Organo-metallic compound on SPION are optimized. The optimized sonication time and amount of APTES are 8.49 min and 3.40 ml, respectively. The predicted results were validated with experimental data. Using the optimized values APTES were functionalized on the SPION experimentally and the results were compared. The experimental results validate the predicted data. Results show that very minimum sonication time is required for effective grafting of APTES on SPION.

17.
Ultrason Sonochem ; 64: 104865, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31983562

RESUMO

Sonochemical synthesis (sonochemistry) is one of the most effective techniques of breaking down large clusters of nanoparticles (NPs) into smaller clusters or even individual NPs, which ensures their dispersibility (stability) in a solution over a long duration. This paper demonstrates the potential of sonochemistry becoming a valuable tool for the deposition of gold (Au) shell on iron oxide nanoparticles (Fe3O4 NPs) by explaining the underlying complex processes that control the deposition mechanism. This review summarizes the principles of the sonochemistry method and highlights the resulting phenomenon of acoustic cavitation and its associated physical, chemical and thermal effects. The effect of sonochemistry on the deposition of Au NPs on the Fe3O4 surface of various sizes is presented and discussed. A Vibra-Cell ultrasonic solid horn with tip size, frequency, power output of ½ inch, 20 kHz and 750 W respectively was used in core@shell synthesis. The sonochemical process was shown to affect the surface and structure of Fe3O4 NPs via acoustic cavitation, which prevents the agglomeration of clusters in a solution, resulting in a more stable dispersion. Deciphering the mechanism that governs the formation of Au shell on Fe3O4 core NPs has emphasized the potential of sonication in enhancing the chemical activity in solutions.

18.
ACS Appl Mater Interfaces ; 11(43): 39672-39687, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31633323

RESUMO

Clinical translation of nanotechnologies has limited success, at least in part, due to the existence of several overlooked factors on the nature of the nanosystem (e.g., physicochemical properties of nanoparticles), nanobio interfaces (e.g., protein corona composition), and the cellular characteristics (e.g., cell type). In the past decade, several ignored factors including personalized and disease-specific protein corona (a layer of formed biomolecules at the surface of nanoparticles upon their entrance into a biological fluid), incubating temperature, local temperature gradient, cell shape, and cell sex has been introduced. Here, it was hypothesized and validated cell age as another overlooked factor in the field of nanomedicine. To test our hypothesis, cellular toxicity and uptake profiles of our model nanoparticles (i.e., PEGylated quantum dots, QDs) were probed in young and senescent cells (i.e., IMR90 fibroblast cells from human fetal lung and CCD841CoN epithelial cells from human fetal colon) and the outcomes revealed substantial dependency of cell-nanoparticles interactions to the cell age. For example, it was observed that the PEGylated QDs were acutely toxic to senescent IMR90 and CCD841CoN cells, leading to lysosomal membrane permeabilization which caused cell necrosis; in contrast, the young cells were resilient to the exact same amount of QDs and the same incubation time. It was also found that the formation of protein corona could delay the QDs' toxicity on senescent cells. These findings suggest that the cellular aging process have a capacity to cause deteriorative effects on their organelles and normal functions. The outcomes of this study suggest the proof-of-concept that cell age may have critical role in biosystem responses to nanoparticle technologies. Therefore, the effect of cell age should be carefully considered on the nanobio interactions and the information about cellular age (e.g., passage number and age of the cell donor) should be included in the nanomedicine papers to facilitate clinical translation of nanotechnologies and to help scientists to better design and produce safe and efficient diagnostic/therapeutic age-specific nanoparticles.


Assuntos
Senescência Celular/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Pontos Quânticos/toxicidade , Linhagem Celular , Fibroblastos/patologia , Humanos , Membranas Intracelulares/patologia , Lisossomos/patologia , Permeabilidade
19.
Ultrason Sonochem ; 50: 172-181, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30245203

RESUMO

Vertically aligned Zinc oxide nanorods (ZnO NRs) were successfully synthesized in this study using the sonochemical method to improve the intrinsic properties of UV photodetector (PD). Three different thin films: Ti/Zn, Ti/ZnO, and Ti/ZnO/Zn, with the thicknesses of 10 nm/55 nm, 10 nm/85 nm, and 10 nm/85 nm/55 nm respectively, were deposited on glass substrates using the RF-sputtering technique. The synthesized ZnO NRs were investigated using XRD, FESEM and Raman spectroscopy to determine the effect of Zn and ZnO as seed layers, and ZnO as a buffer layer on the surface morphology, crystal structure, optical properties of ZnO NRs. The ZnO NRs grown on Zn/Ti, ZnO/Ti, and Zn/ZnO/Ti are characterized by hexagonal crystal structure with preferential growth in the c-axis direction. The ZnO NRs grown on Zn/ZnO/Ti displayed the highest density, uniform size distribution, vertically aligned rods and aspect ratio. The UV device fabricated from the ZnO NRs grown on Zn /ZnO/Ti also showed the highest photocurrent (360 µA) and responsivity of (878 mA/W). ZnO NRs grown on Zn/ZnO/Ti were also observed to be highly stable and exhibited a relatively rapid response and recovery times for different time intervals when exposed to the UV light of 365 nm wavelength. Thus, the inclusion of the ZnO as a buffer layer (Zn as a seed layer/ZnO as buffer layer/Ti as a buffer layer) improve the properties of the ZnO NRs. In addition, the current gain of ZnO NRs grown on Zn (55 nm)/ZnO (85 nm)/Ti (10 nm) - based ultraviolet (UV) photodetector (PD) is about two times higher than that of conventional Zn (55 nm)/ZnO (85 nm)/Ti (10 nm) thin-films UV PD, which is due to the higher surface-to-volume ratio of ZnO nanorods (NRs) compared with their thin films. This study confirms the possibility of sonochemically fabricating vertically aligned ZnO nanorods as well as its applicability as a viable UV photodetector.

20.
Nanoscale Res Lett ; 13(1): 339, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361809

RESUMO

Nanoparticle science is rapidly changing the landscape of various scientific fields and defining new technological platforms. This is perhaps even more evident in the field of nanomedicine whereby nanoparticles have been used as a tool for the treatment and diagnosis of many diseases. However, despite the tremendous benefit conferred, common pitfalls of this technology is its potential short and long-term effects on the human body. To understand these issues, many scientific studies have been carried out. This review attempts to shed light on some of these studies and its outcomes. The topics that were examined in this review include the different possible uptake pathways of nanoparticles and intracellular trafficking routes. Additionally, the effect of physicochemical properties of nanoparticle such as size, shape, charge and surface chemistry in determining the mechanism of uptake and biological function of nanoparticles are also addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...