Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Biometals ; 37(1): 87-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37702876

RESUMO

Parsley (Petroselinum crispum) is herb with many biological and medicinal benefits for humans. However, growth on zinc (Zn) and cadmium (Cd) contaminated sites might get severely affected due to over accumulation of heavy metals (HM) in different plant tissues. Antioxidants play a crucial role in minimizing the negative effects of HM. The present study investigates the effects of Zn and Cd stress on P. crispum morphological parameters, enzymatic/non-enzymatic antioxidant profiling and metal accumulation in shoot/root. Plants were exposed to different concentrations of Zn (50, 100, 150 and 200 µM) and Cd (10, 20, 40 and 80 µM) along with control (no stress), in soil-less Hoagland's solution. The results showed that Zn and Cd substantially decrease the growth parameters with increased contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL). Non-enzymatic antioxidant activities, like total phenolic contents (TPC) and ferric reducing antioxidant power (FRAP), were induced high in leaves only upon Cd stress and contrarily decreased upon Zn stress. Total flavonoid contents (TFC) were decreased under Zn and Cd stress. Enzymatic antioxidant activities like superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also strongly induced upon Cd stress. At the same time, SOD and guaiacol peroxidase (GPX) activity was induced significantly upon Zn stress. Cd uptake and accumulation was notably high in roots as compared to shoots, which suggests P. crispum have a reduced ability to translocate Cd towards aboveground parts (leaves). Additionally, strong induction of antioxidants by P. crispum under Cd stress might indicate the capacity to effectively re-modulate its physiological response. However, further investigations regarding other HMs and experiments at the molecular level are still needed.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Antioxidantes/farmacologia , Cádmio/farmacologia , Petroselinum/metabolismo , Zinco/farmacologia , Peróxido de Hidrogênio , Metais Pesados/farmacologia , Superóxido Dismutase/metabolismo , Raízes de Plantas/metabolismo , Estresse Oxidativo
2.
Environ Res ; 238(Pt 2): 116909, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673119

RESUMO

Xenobiotic pollution in environment is a potential risk to marine life, and human health. Nanobiotechnology is an advanced and emerging solution for the removal of environmental pollutants. Adsorption-based technologies are being used to alleviate the global prevalence of xenobiotics like dyes, due to their high efficacy and cost effectiveness. Current study explored the potential of nanobiochar syntehsized via ultrasonication and centrifugation from rice husk for dye removal from water. It involves the synthesis of nanobiochar from rice husk biochar for removal of Safranin, Malachite green, and a mixture of both from aqueous water. Biochar was synthesized through pyrolysis at 600 °C for 2 h. To convert it into nanobiochar, sonication and centrifugation techniques were applied. The yield obtained was 27.5% for biochar and 0.9% for nanobiochar. Nanobiochar analysis through Fourier-Transform Spectrometer (FTIR), X-ray Power Diffraction (XRD) and scanning electron microscopy (SEM) suggested its crystalline nature having minerals rich in silicon, with a cracked and disintegrated carbon structure due to high temperature and processing treatments. Removal of dyes by nanobiochar was evaluated by changing different physical parameters i.e., nanobiochar dose, pH, and temperature. Pseudo-first order model and pseudo-second order model were applied to studying the adsorption kinetics mechanism. Kinetics for adsorption of dyes followed the pseudo-second order model suggesting the removal of dyes by process of chemical sorption. High adsorption was found at a higher concentration of nanobiochar, high temperature, and neutral pH. Maximum elimination percentages of safranin, malachite green, and a mixture of dyes were obtained as 91.7%, 87.5%, and 85% respectively. We conclude that nanobiochar could be a solution for dye removal from aqueous media.


Assuntos
Oryza , Poluentes Químicos da Água , Humanos , Oryza/química , Água , Corantes/química , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
3.
Biotechnol Genet Eng Rev ; : 1-35, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747352

RESUMO

Biochar is the thermal degradation product of biomass generated in an oxygen-limited environment under different pyrolysis conditions. Biochar characteristics are functions of the feedstock material and pyrolysis temperature. Depending on pyrolysis conditions biochar concentrates varying quantities of recalcitrant and labile carbon along with nutrients which in turn affect soil physiochemical properties and microbial processes. Biochar in soil balances carbon content encourages nitrogen fixation and solubilize phosphorus along with enhancing soil enzyme activity. It serves as a microhabitat for microorganisms present in soil thus influences the diversity, composition, and distribution of soil microbial communities by affecting their intra- and interspecific communication. This review provides an overview of the current knowledge about biochar characteristics, its interactions with soil, and associated biota and its role in soil remediation. In addition, this paper also discussed the factors affecting the capacity of biochar to adsorb organic pollutants following different mechanisms. Being an effective adsorbent due its high specific surface area, large porosity, and numerous surface functional groups biochar has been explored extensively in field of environment to remediate contaminated soils.

4.
Environ Monit Assess ; 192(9): 569, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770276

RESUMO

Hydrocarbon contamination due to anthropogenic activities is a major environmental concern worldwide. The present study focuses on biochar prepared from fruit and vegetable waste and sewage sludge using a thermochemical approach and its application for the enhanced bioremediation (biostimulation and bioaugmentation) of diesel-polluted soil. The biochar was characterized using FTIR (Fourier-transform infrared spectroscopy), elemental analysis, surface area analysis, and pore analysis. Adsorption experiments showed that hydrocarbon degradation was attributed to biological processes rather than adsorption. The study found that various biochar amendments could significantly increase the rate of hydrocarbon biodegradation with removal efficiencies > 70%. Bioaugmentation using cow dung further improved the removal efficiency to 82%. Treatments showing the highest degree of removal efficiency indicated the presence of 27 different bacteria phyla with Proteobacteria and Actinobacteria as the most abundant phyla. The present study concludes that biochar amendments have great potential for enhancing the bioremediation of soils contaminated with diesel range hydrocarbons.


Assuntos
Petróleo , Poluentes do Solo/análise , Animais , Biodegradação Ambiental , Bovinos , Carvão Vegetal , Monitoramento Ambiental , Feminino , Hidrocarbonetos , Solo , Microbiologia do Solo
5.
Electron. j. biotechnol ; 46: 50-54, jul. 2020. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1223243

RESUMO

BACKGROUND: Pomegranate (Punica granatum L.), one of the most important tropical fruits in Azad Jammu and Kashmir regions of Pakistan, is highly valued for its nutrition and medicinal purposes. Although pomegranate is native to this region, the genetic diversity among wild pomegranate accessions is currently unknown. Such information would be vital for germplasm conservation and breeding efforts. In the current study, genetic diversity among forty-eight wild pomegranate accessions collected from different agro-ecological zones of Azad Jammu and Kashmir was assessed using 41 simple sequence repeat (SSR) markers. RESULTS: The markers revealed 303 alleles averaging 7.39 alleles per marker. Polymorphic information content ranged from 0.12 (PGCT093B) to 0.88 (Pom006), with a mean of 0.54. The average genetic distance (GD) across all genotypes was 0.52, and was lowest between Chattar Class and Thorar genotypes (GD = 0.27), but highest between Khun Bandway and Akhor Ban (GD = 0.74). A neighbor-joining dendrogram separated the genotypes into three major clusters, with further sub-clustering within each cluster. CONCLUSIONS: Overall, the results presented here show significant genetic diversity among wild pomegranate accessions in Azad Jammu and Kashmir region of Pakistan. These accessions present a valuable genetic resource to breeding and cultivar improvement programs within the region.


Assuntos
Variação Genética , Punica granatum/genética , Paquistão , DNA , Repetições de Microssatélites , Alelos
6.
Indian J Pharm Sci ; 76(5): 455-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25425762

RESUMO

In this study, the ethanol extract of Cissampelos pareira has been evaluated. The extract was tested for analgesic properties using both hot plate and acetic acid-induced writhing methods. Antiinflammatory effect was investigated using two different doses of 250 and 500 mg/kg body weight on Evans rats by carrageenan-induced paw edema test. The antipyretic activity was evaluated using Brewer's yeast-induced pyrexia in Wistar rats. The phytochemical screening of the extract of Cissampelos pareira exhibited the presence of several phytochemical compounds including saponins, gums and carbohydrates, reducing sugars, alkaloids and terpenoids. Ethanol extract of Cissampelos pareira exhibited significant analgesic, antiinflammatory and antipyretic activity in a dose-dependent manner. The results obtained from these studies confirm its therapeutic value against diseases caused by various pain and fever.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...