Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083346

RESUMO

Pain is a highly unpleasant sensory experience, for which currently no objective diagnostic test exists to measure it. Identification and localisation of pain, where the subject is unable to communicate, is a key step in enhancing therapeutic outcomes. Numerous studies have been conducted to categorise pain, but no reliable conclusion has been achieved. This is the first study that aims to show a strict relation between Electrodermal Activity (EDA) signal features and the presence of pain and to clarify the relation of classified signals to the location of the pain. For that purpose, EDA signals were recorded from 28 healthy subjects by inducing electrical pain at two anatomical locations (hand and forearm) of each subject. The EDA data were preprocessed with a Discrete Wavelet Transform to remove any irrelevant information. Chi-square feature selection was used to select features extracted from three domains: time, frequency, and cepstrum. The final feature vector was fed to a pool of classification schemes where an Artificial Neural Network classifier performed best. The proposed method, evaluated through leave-one-subject-out cross-validation, provided 90% accuracy in pain detection (no pain vs. pain), whereas the pain localisation experiment (hand pain vs. forearm pain) achieved 66.67% accuracy.Clinical relevance- This is the first study to provide an analysis of EDA signals in finding the source of the pain. This research explores the viability of using EDA for pain localisation, which may be helpful in the treatment of noncommunicable patients.


Assuntos
Dor Aguda , Humanos , Redes Neurais de Computação , Análise de Ondaletas , Mãos , Extremidade Superior
2.
Sensors (Basel) ; 23(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112321

RESUMO

Critically ill patients often lack cognitive or communicative functions, making it challenging to assess their pain levels using self-reporting mechanisms. There is an urgent need for an accurate system that can assess pain levels without relying on patient-reported information. Blood volume pulse (BVP) is a relatively unexplored physiological measure with the potential to assess pain levels. This study aims to develop an accurate pain intensity classification system based on BVP signals through comprehensive experimental analysis. Twenty-two healthy subjects participated in the study, in which we analyzed the classification performance of BVP signals for various pain intensities using time, frequency, and morphological features through fourteen different machine learning classifiers. Three experiments were conducted using leave-one-subject-out cross-validation to better examine the hidden signatures of BVP signals for pain level classification. The results of the experiments showed that BVP signals combined with machine learning can provide an objective and quantitative evaluation of pain levels in clinical settings. Specifically, no pain and high pain BVP signals were classified with 96.6% accuracy, 100% sensitivity, and 91.6% specificity using a combination of time, frequency, and morphological features with artificial neural networks (ANNs). The classification of no pain and low pain BVP signals yielded 83.3% accuracy using a combination of time and morphological features with the AdaBoost classifier. Finally, the multi-class experiment, which classified no pain, low pain, and high pain, achieved 69% overall accuracy using a combination of time and morphological features with ANN. In conclusion, the experimental results suggest that BVP signals combined with machine learning can offer an objective and reliable assessment of pain levels in clinical settings.


Assuntos
Volume Sanguíneo , Redes Neurais de Computação , Humanos , Medição da Dor , Frequência Cardíaca , Dor/diagnóstico , Algoritmos
3.
Sensors (Basel) ; 21(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833662

RESUMO

Accurate and early detection of machine faults is an important step in the preventive maintenance of industrial enterprises. It is essential to avoid unexpected downtime as well as to ensure the reliability of equipment and safety of humans. In the case of rotating machines, significant information about machine's health and condition is present in the spectrum of its vibration signal. This work proposes a fault detection system of rotating machines using vibration signal analysis. First, a dataset of 3-dimensional vibration signals is acquired from large induction motors representing healthy and faulty states. The signal conditioning is performed using empirical mode decomposition technique. Next, multi-domain feature extraction is done to obtain various combinations of most discriminant temporal and spectral features from the denoised signals. Finally, the classification step is performed with various kernel settings of multiple classifiers including support vector machines, K-nearest neighbors, decision tree and linear discriminant analysis. The classification results demonstrate that a hybrid combination of time and spectral features, classified using support vector machines with Gaussian kernel achieves the best performance with 98.2% accuracy, 96.6% sensitivity, 100% specificity and 1.8% error rate.


Assuntos
Sistemas Inteligentes , Vibração , Algoritmos , Humanos , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte
4.
Comput Biol Med ; 138: 104926, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656868

RESUMO

Coronary Artery Diseases (CADs) are a dominant cause of worldwide fatalities. The development of accurate and timely diagnosis routines is imperative to reduce these risks and mortalities. Coronary angiography, an invasive and expensive technique, is currently used as a diagnostic tool for the detection of CAD but it has some procedural hazards, i.e., it requires arterial puncture, and the subject gets exposed to iodinated radiation. Phonocardiography (PCG), a non-invasive and inexpensive technique, is a modality employing heart sounds to diagnose heart diseases but it requires only trained medical personnel to apprehend cardiac murmurs in clinical environments. Furthermore, there is a strong compulsion to characterize CAD into its types, such as Single vessel coronary artery disease (SVCAD), Double vessel coronary artery disease (DVCAD), and Triple vessel coronary artery disease (TVCAD) to assist the cardiologist in decision making about the treatment procedure followed. This paper presents a computer-aided diagnosis system for the categorization of CAD and its types based on Phonocardiogram (PCG) signal analysis. The raw PCG signals were denoised via empirical mode decomposition (EMD) to remove redundant information and noise. Next, we extract MFCC and proposed 1D-Adaptive Local Ternary Patterns (1D-ALTP) and fused them serially to get a strong feature representation of multiple PCG signal classes. Features were further reduced through Multidimensional Scaling (MDS) and subjected to several classification methods such as support vector machines (SVM), Decision Tree (DT), and K-nearest neighbors (KNN) in a comparative fashion. The best classification performances of 98.3% and 97.2% mean accuracies were obtained through SVM with the cubic kernel for binary and multiclass experiments, respectively. The performance of the proposed system is comprehensively tested through 10-fold cross-validation and hold-out train-test techniques to avoid model overfitting. Comparative analysis with existing approaches advocates the superiority of the proposed approach.


Assuntos
Doença da Artéria Coronariana , Ruídos Cardíacos , Algoritmos , Doença da Artéria Coronariana/diagnóstico por imagem , Sopros Cardíacos , Humanos , Fonocardiografia , Processamento de Sinais Assistido por Computador
5.
Sensors (Basel) ; 21(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401652

RESUMO

Hypertension is an antecedent to cardiac disorders. According to the World Health Organization (WHO), the number of people affected with hypertension will reach around 1.56 billion by 2025. Early detection of hypertension is imperative to prevent the complications caused by cardiac abnormalities. Hypertension usually possesses no apparent detectable symptoms; hence, the control rate is significantly low. Computer-aided diagnosis based on machine learning and signal analysis has recently been applied to identify biomarkers for the accurate prediction of hypertension. This research proposes a new expert hypertension detection system (EHDS) from pulse plethysmograph (PuPG) signals for the categorization of normal and hypertension. The PuPG signal data set, including rich information of cardiac activity, was acquired from healthy and hypertensive subjects. The raw PuPG signals were preprocessed through empirical mode decomposition (EMD) by decomposing a signal into its constituent components. A combination of multi-domain features was extracted from the preprocessed PuPG signal. The features exhibiting high discriminative characteristics were selected and reduced through a proposed hybrid feature selection and reduction (HFSR) scheme. Selected features were subjected to various classification methods in a comparative fashion in which the best performance of 99.4% accuracy, 99.6% sensitivity, and 99.2% specificity was achieved through weighted k-nearest neighbor (KNN-W). The performance of the proposed EHDS was thoroughly assessed by tenfold cross-validation. The proposed EHDS achieved better detection performance in comparison to other electrocardiogram (ECG) and photoplethysmograph (PPG)-based methods.


Assuntos
Hipertensão , Adulto , Idoso , Algoritmos , Diagnóstico por Computador , Eletrocardiografia , Feminino , Frequência Cardíaca , Humanos , Hipertensão/diagnóstico , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade
6.
Sensors (Basel) ; 20(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640710

RESUMO

Congenital heart disease (CHD) is a heart disorder associated with the devastating indications that result in increased mortality, increased morbidity, increased healthcare expenditure, and decreased quality of life. Ventricular Septal Defects (VSDs) and Arterial Septal Defects (ASDs) are the most common types of CHD. CHDs can be controlled before reaching a serious phase with an early diagnosis. The phonocardiogram (PCG) or heart sound auscultation is a simple and non-invasive technique that may reveal obvious variations of different CHDs. Diagnosis based on heart sounds is difficult and requires a high level of medical training and skills due to human hearing limitations and the non-stationary nature of PCGs. An automated computer-aided system may boost the diagnostic objectivity and consistency of PCG signals in the detection of CHDs. The objective of this research was to assess the effects of various pattern recognition modalities for the design of an automated system that effectively differentiates normal, ASD, and VSD categories using short term PCG time series. The proposed model in this study adopts three-stage processing: pre-processing, feature extraction, and classification. Empirical mode decomposition (EMD) was used to denoise the raw PCG signals acquired from subjects. One-dimensional local ternary patterns (1D-LTPs) and Mel-frequency cepstral coefficients (MFCCs) were extracted from the denoised PCG signal for precise representation of data from different classes. In the final stage, the fused feature vector of 1D-LTPs and MFCCs was fed to the support vector machine (SVM) classifier using 10-fold cross-validation. The PCG signals were acquired from the subjects admitted to local hospitals and classified by applying various experiments. The proposed methodology achieves a mean accuracy of 95.24% in classifying ASD, VSD, and normal subjects. The proposed model can be put into practice and serve as a second opinion for cardiologists by providing more objective and faster interpretations of PCG signals.


Assuntos
Cardiopatias Congênitas , Ruídos Cardíacos , Processamento de Sinais Assistido por Computador , Algoritmos , Cardiopatias Congênitas/diagnóstico , Humanos , Fonocardiografia , Qualidade de Vida , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...