Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(6): 2285-2292, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35271292

RESUMO

Fine control over material synthesis on the nanoscale can facilitate the stabilization of competing crystalline structures. Here, we demonstrate how carbon nanotube reaction vessels can be used to selectively create one-dimensional TaTe3 chains or two-dimensional TaTe2 nanoribbons with exquisite control of the chain number or nanoribbon thickness and width. Transmission electron microscopy and scanning transmission electron microscopy reveal the detailed atomic structure of the encapsulated materials. Complex superstructures such as multichain spiraling and apparent multilayer moirés are observed. The rare 2H phase of TaTe2 (1H in monolayer) is found to be abundant as an encapsulated nanoribbon inside carbon nanotubes. The experimental results are complemented by density functional theory calculations for the atomic and electronic structure, which uncovers the prevalence of 2H-TaTe2 due to nanotube-to-nanoribbon charge transfer and size confinement. Calculations also reveal new 1T' type charge density wave phases in TaTe2 that could be observed in experimental studies.


Assuntos
Nanotubos de Carbono , Eletrônica , Nanotubos de Carbono/química
2.
ACS Nano ; 15(11): 18297-18304, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34739204

RESUMO

Metallic transition-metal dichalcogenides (TMDs) are rich material systems in which the interplay between strong electron-electron and electron-phonon interactions often results in a variety of collective electronic states, such as charge density waves (CDWs) and superconductivity. While most metallic group V TMDs exhibit coexisting superconducting and CDW phases, 2H-NbS2 stands out with no charge ordering. Further, due to strong interlayer interaction, the preparation of ultrathin samples of 2H-NbS2 has been challenging, limiting the exploration of presumably rich quantum phenomena in reduced dimensionality. Here, we demonstrate experimentally and theoretically that light substitutional doping of NbS2 with heavy atoms is an effective approach to modify both interlayer interaction and collective electronic states in NbS2. Very low concentrations of Re dopants (<1%) make NbS2 exfoliable (down to monolayer) while maintaining its 2H crystal structure and superconducting behavior. In addition, first-principles calculations suggest that Re dopants can stabilize some native CDW patterns that are not stable in pristine NbS2.

3.
Nano Lett ; 21(7): 3211-3217, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33818102

RESUMO

Imposing additional confinement in two-dimensional (2D) materials yields further control over their electronic, optical, and topological properties. However, synthesis of ultranarrow nanoribbons (NRs) remains challenging, particularly for transition metal dichalcogenides (TMDs), and synthesizing TMD NRs narrower than 50 nm has remained elusive. Here, we report the vapor-phase synthesis of ultranarrow TaS2 NRs. The NRs are grown within carbon nanotubes, limiting their width and layer number, while stabilizing them against the environment. The NRs reach monolayer thickness and exhibit widths down to 2.5 nm. Atomic-resolution scanning transmission electron microscopy reveals the detailed atomic structure of the ultranarrow NRs and we observe a hitherto unseen atomic structure supermodulation of ordered defect arrays within the NRs. Density functional theory calculations show the presence of flat bands and boundary-localized states, and help identify the atomic configuration of the supermodulation. Nanotube-templated synthesis represents a unique, transferable, and broadly deployable route toward ultranarrow TMD NR growth.

4.
J Am Chem Soc ; 143(12): 4563-4568, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33258601

RESUMO

The structure of MX3 transition metal trichalcogenides (TMTs, with M a transition metal and X a chalcogen) is typified by one-dimensional (1D) chains weakly bound together via van der Waals interactions. This structural motif is common across a range of M and X atoms (e.g., NbSe3, HfTe3,TaS3), but not all M and X combinations are stable. We report here that three new members of the MX3 family which are not stable in bulk, specifically NbTe3, VTe3, and TiTe3, can be synthesized in the few- (2-4) to single-chain limit via nanoconfined growth within the stabilizing cavity of multiwalled carbon nanotubes. Transmission electron microscopy (TEM) and atomic-resolution scanning transmission electron microscopy (STEM) reveal the chain-like nature and the detailed atomic structure. The synthesized materials exhibit behavior unique to few-chain quasi-1D structures, such as few-chain spiraling and a trigonal antiprismatic rocking distortion in the single-chain limit. Density functional theory (DFT) calculations provide insight into the crystal structure and stability of the materials, as well as their electronic structure.

5.
Proc Natl Acad Sci U S A ; 117(42): 26135-26140, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020263

RESUMO

The electronic and topological properties of materials are derived from the interplay between crystalline symmetry and dimensionality. Simultaneously introducing "forbidden" symmetries via quasiperiodic ordering with low dimensionality into a material system promises the emergence of new physical phenomena. Here, we isolate a two-dimensional (2D) chalcogenide quasicrystal and approximant, and investigate their electronic and topological properties. The 2D layers of the materials with a composition close to Ta1.6Te, derived from a layered transition metal dichalcogenide, are isolated with standard exfoliation techniques, and investigated with electron diffraction and atomic resolution scanning transmission electron microscopy. Density functional theory calculations and symmetry analysis of the large unit cell crystalline approximant of the quasicrystal, Ta21Te13, reveal the presence of symmetry-protected nodal crossings in the quasicrystalline and approximant phases, whose presence is tunable by layer number. Our study provides a platform for the exploration of physics in quasicrystalline, low-dimensional materials and the interconnected nature of topology, dimensionality, and symmetry in electronic systems.

6.
Nano Lett ; 20(8): 6120-6127, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32680428

RESUMO

The development of room-temperature sensing devices for detecting small concentrations of molecular species is imperative for a wide range of low-power sensor applications. We demonstrate a room-temperature, highly sensitive, selective, stable, and reversible chemical sensor based on a monolayer of the transition-metal dichalcogenide Re0.5Nb0.5S2. The sensing device exhibits a thickness-dependent carrier type, and upon exposure to NO2 molecules, its electrical resistance considerably increases or decreases depending on the layer number. The sensor is selective to NO2 with only minimal response to other gases such as NH3, CH2O, and CO2. In the presence of humidity, not only are the sensing properties not deteriorated but also the monolayer sensor shows complete reversibility with fast recovery at room temperature. We present a theoretical analysis of the sensing platform and identify the atomically sensitive transduction mechanism.


Assuntos
Gases , Dióxido de Nitrogênio , Umidade , Temperatura
7.
Phys Rev Lett ; 124(9): 096101, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202855

RESUMO

Frustrated interactions can lead to short-range ordering arising from incompatible interactions of fundamental physical quantities with the underlying lattice. The simplest example is the triangular lattice of spins with antiferromagnetic interactions, where the nearest-neighbor spin-spin interactions cannot simultaneously be energy minimized. Here we show that engineering frustrated interactions is a possible route for controlling structural and electronic phenomena in semiconductor alloys. Using aberration-corrected scanning transmission electron microscopy in conjunction with density functional theory calculations, we demonstrate atomic ordering in a two-dimensional semiconductor alloy as a result of the competition between geometrical constraints and nearest-neighbor interactions. Statistical analyses uncover the presence of short-range ordering in the lattice. In addition, we show how the induced ordering can be used as another degree of freedom to considerably modify the band gap of monolayer semiconductor alloys.

8.
ACS Nano ; 13(11): 12385-12392, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31593435

RESUMO

The self-assembly of nanoscale materials at the liquid-liquid interface allows for fabrication of three-dimensionally structured liquids with nearly arbitrary geometries and tailored electronic, optical, and magnetic properties. Two-dimensional (2D) materials are highly anisotropic, with thicknesses on the order of a nanometer and lateral dimensions upward of hundreds of nanometers to micrometers. Controlling the assembly of these materials has direct implications for their properties and performance. We here describe the interfacial assembly and jamming of Ti3C2Tx MXene nanosheets at the oil-water interface. Planar, as well as complex, programmed three-dimensional all-liquid objects are realized. Our approach presents potential for the creation of all-liquid 3D-printed devices for possible applications in all-liquid electrochemical and energy storage devices and electrically active, all-liquid fluidics that exploits the versatile structure, functionality, and reconfigurability of liquids.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31205427

RESUMO

OBJECTIVES: In this study, we aim to evaluate the bone mineral density (BMD) results of 2 standard sites with 3 sites including wrist in diagnosing osteoporosis. METHODS: We evaluated the BMD results of 1272 individuals referred for suspected osteoporosis between 2012 and 2015. Those individuals were included with BMD at lumbar spine, femur neck, and wrist. Bone mineral density was measured using a dual-energy X-ray absorptiometry (DXA) device. Bone mineral density and T score were measured for all 3 sites. RESULTS: There was significant correlation between wrist T score with hip T score (r = 0.606, P < .001) and lumbar T score (r = 0.527, P < .001). With BMD of 2 sites, patients had osteopenia in 46.3% and osteoporosis in 23.7%, while by adding wrist T-BMD, subjects had osteopenia in 46.6% and osteoporosis in 33%. Between BMD at 2 sites and 3 sites, there was concordance in 81.9%, minor discordance in 17.6%, and major discordance in 0.5%. CONCLUSIONS: We observed discordance between BMD measurements of 2 sites and 3 sites, with latter detecting more cases with osteoporosis. In fact, measurement of T scores of wrist along with lumbar and femur neck improves the diagnosis.

10.
Nano Lett ; 19(3): 1782-1787, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30746949

RESUMO

Alloying two-dimensional (2D) semiconductors provides a powerful method to tune their physical properties, especially those relevant to optoelectronic applications. However, as the crystal structure becomes more complex, it becomes increasingly difficult to accurately correlate response characteristics to detailed atomic structure. We investigate, via annular dark-field scanning transmission electron microscopy, electron energy loss spectroscopy, and second harmonic generation, the layered III-VI alloy GaSe0.5Te0.5 as a function of layer number. The local atomic structure and stacking sequence for different layers is explicitly determined. We complement the measurements with first-principles calculations of the total energy and electronic band structure of GaSe0.5Te0.5 for different crystal structures and layer number. The electronic band gap as well as the π and π + σ plasmons are found to be sensitive to layer number.

11.
Sci Rep ; 7(1): 15096, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118413

RESUMO

We demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through an h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.

12.
Adv Mater ; 29(35)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714119

RESUMO

Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge-discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge-discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm-3 , even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge-discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications.

13.
Nano Lett ; 17(5): 2802-2808, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28288273

RESUMO

Two-dimensional materials offer a remarkably rich materials platform to study the origin of different material behaviors at the atomic level, and doping provides a key means of tailoring such materials' functional properties. The local atomic structure around such dopants can be critically important in determining the material's behavior as it could modulate scattering, catalytic activity, electronic and magnetic properties, and so forth. Here, using aberration-corrected scanning transmission electron microscopy (STEM) with sub-Ångstrom resolution in conjunction with density functional theory calculations, we demonstrate a strong coupling between Mo dopants and two types of defects in WS2 monolayers: sulfur monovacancies and grain boundaries. Although Mo does occupy a transition metal lattice site, it is not an ideal substitutional dopant: ∼80% of the S vacancies identified by STEM colocalize with Mo dopants, an affinity that appears to be enhanced by symmetry breaking of a partially occupied midgap defect state. Although a Mo dopant by itself does not considerably distort the WS2 lattice, it induces substantial lattice deformation by apparently facilitating the charging of a sulfur monovacancy paired with it, which is consistent with the results of first-principles calculations. This coupling of foreign substitutional dopants with vacancies could potentially be exploited to control the distribution and location of chalcogenide vacancies within transition metal dichalcogenides (TMD), by segregating vacancies into regions of high Mo concentration that are purposely placed away from active regions of TMD-based devices.

14.
Nano Lett ; 16(11): 6982-6987, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27673342

RESUMO

Whether an alloy is random or ordered can have profound effects on its properties. The close chemical similarity of W and Mo in the two-dimensional semiconductors MoS2 and WS2 has led to the expectation that WxMo1-xS2 is a random alloy. Here we report that triangular monolayer flakes of WxMo1-xS2 produced by sulfurization of MoO3/WO3 are not only nonrandom, but also anisotropic: W and Mo form atomically thin chains oriented parallel to the edges of the triangle, especially around x ∼ 0.5, as resolved by aberration-corrected transmission electron microscopy. First-principles calculations reveal that the binding energies of striped and random alloys are nearly identical but that phase segregation at the growth edge favors one metal over another depending on the local sulfur availability, independent of the composition deeper inside the monolayer. Thus, atomically thin striping is kinetically driven and controlled by fluctuations that couple the local chemical potentials of metals and chalcogenide. Considering the nearly identical electronic properties but very different atomic masses of Mo and W, the resulting striped alloy is electronically isotropic, but vibrationally anisotropic. Phonon anomalies associated with the stripe ordering are predicted, as is an anisotropic thermal conductivity. More generally, fluctuation-driven striping provides a mechanism to produce in-plane subnanometer superlattices within two-dimensional crystals, with broad implications for controlling the electronic, optical, and structural properties of these systems.

15.
ACS Nano ; 9(5): 4882-90, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25885122

RESUMO

Vertical stacking of two-dimensional (2D) crystals has recently attracted substantial interest due to unique properties and potential applications they can introduce. However, little is known about their microstructure because fabrication of the 2D heterostructures on a rigid substrate limits one's ability to directly study their atomic and chemical structures using electron microscopy. This study demonstrates a unique approach to create atomically thin freestanding van der Waals heterostructures-WSe2/graphene and MoS2/graphene-as ideal model systems to investigate the nucleation and growth mechanisms in heterostructures. In this study, we use transmission electron microscopy (TEM) imaging and diffraction to show epitaxial growth of the freestanding WSe2/graphene heterostructure, while no epitaxy is maintained in the MoS2/graphene heterostructure. Ultra-high-resolution aberration-corrected scanning transmission electron microscopy (STEM) shows growth of monolayer WSe2 and MoS2 triangles on graphene membranes and reveals their edge morphology and crystallinity. Photoluminescence measurements indicate a significant quenching of the photoluminescence response for the transition metal dichalcogenides on freestanding graphene, compared to those on a rigid substrate, such as sapphire and epitaxial graphene. Using a combination of (S)TEM imaging and electron diffraction analysis, this study also reveals the significant role of defects on the heterostructure growth. The direct growth technique applied here enables us to investigate the heterostructure nucleation and growth mechanisms at the atomic level without sample handling and transfer. Importantly, this approach can be utilized to study a wide spectrum of van der Waals heterostructures.

16.
Nat Commun ; 5: 4867, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25202857

RESUMO

Dislocations have a significant effect on mechanical, electronic, magnetic and optical properties of crystals. For a dislocation to migrate in bulk crystals, collective and simultaneous movement of several atoms is needed. In two-dimensional crystals, in contrast, dislocations occur on the surface and can exhibit unique migration dynamics. Dislocation migration has recently been studied in graphene, but no studies have been reported on dislocation dynamics for two-dimensional transition metal dichalcogenides with unique metal-ligand bonding and a three-atom thickness. This study presents dislocation motion, glide and climb, leading to grain boundary migration in a tungsten disulphide monolayer. Direct atomic-scale imaging coupled with atomistic simulations reveals a strikingly low-energy barrier for glide, leading to significant grain boundary reconstruction in tungsten disulphide. The observed dynamics are unique and different from those reported for graphene. Through strain field mapping, we also demonstrate how dislocations introduce considerable strain along the grain boundaries and at the dislocation cores.

17.
Asian J Psychiatr ; 6(3): 208-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23642977

RESUMO

INTRODUCTION: Bipolar disorder is one of ten most debilitating diseases in the world, leading to a lessened quality of life amongst its sufferers. This randomised control trial demonstrates the effectiveness of psycho-education intervention along with a patient support system in the management of this disorder. METHODOLOGY: In this trial, 108 patients, divided equally into two groups, were randomly assigned to receive either pharmacotherapy alone (control group) or psycho-education along with pharmacotherapy treatment (intervention group) for a two year period. Each individual patient in the "intervention" group received eight, fifty-minute sessions of psychological education, followed by monthly telephone follow-up care and psychological support in the subsequent 18 months. Each group was evaluated, once every 6 months for a period of 18 months, in the areas of "quality of life", "symptoms of relapse", "pharmacotherapy compliance" and "number of hospital admission for recurrence of bipolar disorder". RESULT: The result of this study indicates that patients in the "intervention" group had a statistically significant enhancement in medication compliance (P = 0.008). Regarding every aspect of life quality, this group was at a better position than the "control" group (P = 0.000). As to relapse and hospital admission, the "intervention" group reported much lower cases compared with the "control" group at a significance level of P = 0.000. CONCLUSION AND DISCUSSION: This research has demonstrated that in the psycho-education intervention group, there was a more significant improvement in all areas of quality of life, number of relapses, and hospitalization due to recurrence of bipolar disorder and medication compliance than it was evident in the control groups.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Educação de Pacientes como Assunto/métodos , Psicoterapia/métodos , Qualidade de Vida , Adolescente , Adulto , Transtorno Bipolar/psicologia , Transtorno Bipolar/reabilitação , Terapia Combinada , Feminino , Humanos , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Recidiva , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...