Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948468

RESUMO

We investigated the effects of luteolin on metabolism, vascular reactivity, and perivascular adipose tissue (PVAT) in nonobese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats. METHODS: Wistar and GK rats were divided in two groups: (1) control groups treated with vehicle; (2) groups treated with luteolin (10 mg/kg/day, for 2 months). Several metabolic parameters such as adiposity index, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. Endothelial function and contraction studies were performed in aortas with (PVAT+) or without (PVAT-) periaortic adipose tissue. We also studied vascular oxidative stress, glycation and assessed CRP, CCL2, and nitrotyrosine levels in PVAT. RESULTS: Endothelial function was impaired in diabetic GK rats (47% (GK - PVAT) and 65% (GK + PVAT) inhibition of maximal endothelial dependent relaxation) and significantly improved by luteolin treatment (29% (GK - PVAT) and 22% (GK + PVAT) inhibition of maximal endothelial dependent relaxation, p < 0.01). Vascular oxidative stress and advanced glycation end-products' levels were increased in aortic rings (~2-fold, p < 0.05) of diabetic rats and significantly improved by luteolin treatment (to levels not significantly different from controls). Periaortic adipose tissue anti-contractile action was significantly rescued with luteolin administration (p < 0.001). In addition, luteolin treatment significantly recovered proinflammatory and pro-oxidant PVAT phenotype, and improved systemic and metabolic parameters in GK rats. CONCLUSIONS: Luteolin ameliorates endothelial dysfunction in type 2 diabetes and exhibits therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Luteolina/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Luteolina/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Tirosina/análogos & derivados , Tirosina/metabolismo
2.
Free Radic Biol Med ; 162: 233-242, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099000

RESUMO

BACKGROUND: Perivascular adipose tissue (PVAT) locally influences the functioning of blood vessels and promotes vascular complications associated with diabetes and obesity. The aim of this work was to study the impact of omentin-1 on endothelial function and PVAT in a non-obese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats with or without high fat diet. MATERIAL AND METHODS: Diabetic GK rats were divided into four groups: 1) control group; 2) group treated with omentin-1; 3) group of GK rats fed a high fat diet (GKHFD) and 4) group of GKHFD treated with omentin-1. Several in vivo parameters such as adiposity and Lee indexes, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. At the vascular level, endothelial dependent and independent relaxation and contraction studies were performed in aortic rings in the absence (PVAT-) or in the presence (PVAT+) of thoracic PVAT. We also evaluated vascular oxidative stress and determined the pro-inflammatory status of PVAT. RESULTS: Endothelium-dependent relaxation to acetylcholine, assessed by wire myography, was impaired in GK and GKHFD rats and improved by the omentin-1 treatment. In addition, vascular superoxide production was increased in the vascular wall of diabetic rats, accompanied by reduced nitric oxide bioavailability and significantly improved by omentin treatment. PVAT anti-contractile action found under physiological conditions was lost in type 2 diabetes, and partially recovered with omentin-1 administration. In addition, omentin-1 treatment significantly improved proinflammatory and pro-oxidant PVAT phenotype (decreasing C-reactive protein and nitrotyrosine levels). Furthermore, it was observed an improvement in various systemic and metabolic biochemical parameters of diabetic animals treated for one month with omentin. CONCLUSIONS: Omentin-1 ameliorates endothelial dysfunction in type 2 diabetes and presents therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Tecido Adiposo , Animais , Citocinas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Endotélio Vascular , Lectinas , Óxido Nítrico , Obesidade/tratamento farmacológico , Ratos
3.
Free Radic Biol Med ; 146: 264-274, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31698080

RESUMO

BACKGROUND: Perivascular adipose tissue (PVAT) surrounds most large blood vessels and plays an important role in vascular homeostasis. The present study was conducted to investigate the contribution of PVAT to vascular dysfunction in a rat model of type 2 diabetes. MATERIAL AND METHODS: Several in vivo parameters such as lipid profile (total cholesterol and triglyceride systemic levels), fasting glucose levels, glucose tolerance and insulin sensitivity (through glucose and insulin tolerance tests, respectively) were determined in Goto-Kakizaki (GK) diabetic rats and compared with control Wistar rats. At the vascular level, endothelial dependent and independent relaxation and contraction studies were performed in aortic rings in the absence (PVAT-) or in the presence (PVAT+) of thoracic PVAT. We also evaluated vascular oxidative stress and performed western blots, PCR and immunohistochemistry analysis of cytokines and various enzymes in PVAT. RESULTS: Endothelium-dependent relaxation to acetylcholine, assessed by wire myography, was impaired in GK rats and improved by the antioxidant TEMPOL and by the TLR4 inhibitor, CLI-095 suggesting an increase in oxidative stress and inflammation. In addition, vascular superoxide and peroxynitrite production was increased in the vascular wall of diabetic rats, accompanied by reduced nitric oxide bioavailability. The presence of PVAT had an anticontractile effect in response to phenylephrine in Wistar rats that was lost in GK rats. Western blot and immunohistochemistry analysis revealed that PVAT phenotype shifts, under diabetic conditions, towards a proinflammatory (with increment in CRP, CCL2, CD36), pro-oxidant (increased levels of aldose reductase, and reduced levels of antioxidant deference enzymes) and vasoconstriction state. CONCLUSION: Our data suggest that this rat model of type 2 diabetes is associated with perivascular adipose dysfunction that contributes to oxidative stress, inflammation and endothelial dysfunction.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Tecido Adiposo/metabolismo , Animais , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Vasoconstrição
4.
Front Physiol ; 9: 1668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564132

RESUMO

Oxidative stress has been defined as an imbalance between oxidants and antioxidants and more recently as a disruption of redox signaling and control. It is generally accepted that oxidative stress can lead to cell and tissue injury having a fundamental role in vascular dysfunction. Physiologically, reactive oxygen species (ROS) control vascular function by modulating various redox-sensitive signaling pathways. In vascular disorders, oxidative stress instigates endothelial dysfunction and inflammation, affecting several cells in the vascular wall. Vascular ROS are derived from multiple sources herein discussed, which are prime targets for therapeutic development. This review focuses on oxidative stress in vascular physiopathology and highlights different strategies to inhibit ROS production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...