Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(59): 123751-123769, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991610

RESUMO

A novel MnO2@EDTA-Ag nanocoral reef was constructed via a simplified redox reaction followed by EDTA and Ag nanoparticles impregnation to capture hazardous copper (II) from wastewater. A comprehensive characterization of the synthesized materials was conducted. The morphology of MnO2@EDTA-Ag in the form of a nanocoral reef was constructed of two-dimensional nanoplatelets and nanorod-like nanostructures. The optimal adsorption conditions proposed by the Plackett-Burman design (PBD) that would provide a removal % of 99.95 were pH 5.5, a contact time of 32.0 min, a Cu(II) concentration of 11.2 mg L-1, an adsorbent dose of 0.05 g, and a temperature of 40.3 °C. The loading of Ag nanoparticles onto MnO2@EDTA improved the adsorption capability of MnO2@EDTA-Ag. Additionally, the recyclability of MnO2@EDTA-Ag nanocoral reef was maintained at 80% after three adsorption-desorption cycles, and there was no significant change in the XRD analysis before and after the recycling process, implying its stability. It was found that nanocoral reef-assisted EDTA formed a chelation/complexation reaction between COO- groups and C-N bonds of EDTA with Cu(II) ions. In addition, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis proved the synergistic effect of the electrostatic interaction and chelation/complexation was responsible for the removal mechanism of Cu(II). Also, the results demonstrated no significant variation in MnO2@EDTA-Ag removal efficiency for all the tested real water samples, revealing its efficacy in wastewater treatment. Therefore, the current study suggests that MnO2@EDTA-Ag has substantial potential to be used as a feasible adsorbent for probable hazardous metals remediation.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Cobre/química , Óxidos/química , Ácido Edético/química , Águas Residuárias , Compostos de Manganês/química , Prata/análise , Quelantes , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
2.
Environ Sci Pollut Res Int ; 30(56): 119473-119490, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926801

RESUMO

Due to the dual issues of antibiotic resistance and bioaccumulation toxicity, antibiotics are ubiquitously present in aquatic environments, and this is causing serious concern. Herein, novel nickel ferrite (NiFe2O4) nanoparticles were successfully loaded onto activated biochar (BC) derived from banana peel (BP) to obtain magnetic nanocomposite (BC-NiFe2O4) as an effective biosorbent for the ciprofloxacin antibiotic (CIP) elimination from pharmaceutical effluent. A facile co-precipitation approach was utilized to construct the heterogeneous BC-NiFe2O4. The synthesized materials were systematically characterized using techniques such as XRD, FE-SEM, EDX, HR-TEM, BET, FTIR, and XPS. In addition, the magnetic measurements indicated the ferromagnetic behavior of the BC-NiFe2O4 sample. The influencing factors (i.e., pH, contact time, initial concentration, dose of adsorbent, ions interference, and solution temperature) of the adsorption process were also well studied. The adsorption capacity of the BC-NiFe2O4 heterostructure was 68.79 mg g-1 compared to the BC sample (35.71 mg g-1), confirming that the loading of magnetically NiFe2O4 nanoparticles onto the surface of porous biochar enhanced its stability and adsorption performance for CIP removal, wherein the metal-antibiotic complex has a significant effect for the removal of CIP. Moreover, the Langmuir adsorption isotherm and the pseudo-second-order model displayed a good fit for the experimental data. The values of △H° and △G° revealed that the adsorption process was endothermic and spontaneous. The coordination affinities, π-π stacking, and H-bonding interactions play a more critical role in the adsorption mechanism that confirmed by FTIR and XPS analysis. To study the stability of BC-NiFe2O4 nanocomposites, desorption and recycling studies were investigated. The results revealed that after three cycles, no significant loss in removal efficiency was detected, reflecting the stability and reusability of the prepared BC-NiFe2O4 nanocomposite.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Águas Residuárias , Porosidade , Carvão Vegetal/química , Preparações Farmacêuticas , Adsorção , Cinética , Poluentes Químicos da Água/análise
4.
RSC Adv ; 11(31): 18797-18808, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478611

RESUMO

The heterogeneous catalytic conversion of pollutants into useful industrial compounds is a two-goals at once process, which is highly recommended from the environmental, economic, and industrial points of view. In this regard, design materials with high conversion ability for a specific application is required to achieve such a goal. Herein, the synthesis conditions for the fabrication of BiPO4 nanorod bundles supported on g-C3N4 nanosheets as heterojunction composites was achieved using a facile ex situ chemical deposition for the reductive conversion of carcinogenic 4-nitrophenol (4-NP) into 4-aminophenol (4-AP). To better understand the mechanistic reduction pathways, BiPO4/g-C3N4 composites with varying ratios where obtained. The morphology and structure of BiPO4/g-C3N4 composites were checked using several methods: XRD, FE-SEM, HRTEM, XPS, and FT-IR, and it was found that hexagonal phase BiPO4 nanorod bundles were randomly distributed on the g-C3N4 nanosheets. Overall, the reduction ability of BiPO4/g-C3N4 composites was far better than bare BiPO4 and g-C3N4. A total reductive conversion of 4-NP at a concentration of 10 mg L-1 into 4-AP was found with 50% BiPO4/g-C3N4 composite within only one minute of reaction. Moreover, the presence of reducing agent (NaBH4) enhanced the kinetic rate constant up to 2.914 min-1 using 50% BiPO4/g-C3N4, which was much faster than bare BiPO4 (0.052 min-1) or g-C3N4 (0.004 min-1). The effects of some operating parameters including the initial concentration of 4-NP and catalyst dosage were also evaluated during the experiments. BiPO4/g-C3N4 showed great stability and recyclability, wherein, the catalytic reduction efficiency remains the same after five runs. A plausible 4-NP reduction mechanism was discussed. The high catalytic activity with the good stability of BiPO4/g-C3N4 make it a potential candidate for the reduction of nitroaromatic compounds in real wastewaters.

5.
J Hazard Mater ; 381: 120955, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31412306

RESUMO

For the first time, a novel BiPO4/Bi2S3 heterostructures with different morphologies have been fabricated through a facile and rapid one pot precipitation route followed by anion-exchange strategy for the photoreduction of toxic Cr(VI) to harmless Cr (III). The hybrid structures systematically investigated using XRD, FE-SEM, EDS, TEM, HRTEM, XPS, FT-IR, UV-vis DRS, and PL. Changing the solvent type has a significant role for controllable morphologies of BiPO4/Bi2S3 hybrid as well as the catalytic activity. The BiPO4/Bi2S3 hybrid synthesized in diethylene glycol (DEG) performed the highest reduction efficiency of Cr(VI) within 20 min, compared with pure hexagonal phase of BiPO4 under visible light. The rate constant for BiPO4/Bi2S3 synthesized in DEG found to be 20.3 times larger than that for pure BiPO4. In addition, the presence of tartaric acid as hole scavenger could enhance the Cr(VI) reduction efficiency to 97.9%. No significant decrease in the catalytic efficiency after recycling up to four cycles. This promising study could present a significant approach towards Cr(VI) photoreduction from water through the novel BiPO4/Bi2S3 photocatalyst.

6.
RSC Adv ; 9(30): 17246-17253, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35519846

RESUMO

A novel BiPO4 photocatalyst has been fabricated via a facile precipitation route using dimethyl sulfoxide (DMSO) as a solvent. The physical and chemical properties of the BiPO4 photocatalyst material were analyzed using XRD, Rietveld refinements XRD, FE-SEM, TEM, HR-TEM, EDS, XPS, FT-IR, Raman spectra, UV-Vis (DRS), and PL. The results confirm that hexagonal phase BiPO4 (HBIP) nanorods were successfully synthesized. FE-SEM images reveal that the addition of surfactant "CTAB" during preparation can control the surface morphology of BiPO4. The Rietveld refinement technique revealed the formation of a monazite monoclinic (nMBIP) and monoclinic (mMBIP) phase junction resulting from the calcination of HBIP at 500 °C. The photocatalytic behavior of the as-synthesized hexagonal and monoclinic BiPO4 nanostructures towards aniline blue (AB) degradation under UV light was systematically investigated. Among all catalysts, the phase junction (nMBIP-mMBIP) structure demonstrated the highest photocatalytic activity. The degradation rate of AB over the (nMBIP-mMBIP) phase junction structure was 3.4 times higher than that by HBIP. These results suggested that the surface-phase junction provides a synergistic effect for the electron-hole transfer process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...