Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 14(1): 86, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082785

RESUMO

Immunogold labeling allows localization of proteins at the electron microscopy (EM) level of resolution, and quantification of signals. The present paper summarizes methodological issues and experiences gained from studies on the distribution of synaptic and other neuron-specific proteins in cell cultures and brain tissues via a pre-embedding method. An optimal protocol includes careful determination of a fixation condition for any particular antibody, a well-planned tissue processing procedure, and a strict evaluation of the credibility of the labeling. Here, tips and caveats on different steps of the sample preparation protocol are illustrated with examples. A good starting condition for EM-compatible fixation and permeabilization is 4% paraformaldehyde in PBS for 30 min at room temperature, followed by 30 min incubation with 0.1% saponin. An optimal condition can then be readjusted for each particular antibody. Each lot of the secondary antibody (conjugated with a 1.4 nm small gold particle) needs to be evaluated against known standards for labeling efficiency. Silver enhancement is required to make the small gold visible, and quality of the silver-enhanced signals can be affected by subsequent steps of osmium tetroxide treatment, uranyl acetate en bloc staining, and by detergent or ethanol used to clean the diamond knife for cutting thin sections. Most importantly, verification of signals requires understanding of the protein of interest in order to validate for correct localization of antibodies at expected epitopes on particular organelles, and quantification of signals needs to take into consideration the penetration gradient of reagents and clumping of secondary antibodies.


Assuntos
Encéfalo/ultraestrutura , Microscopia Eletrônica , Neurônios/ultraestrutura , Inclusão do Tecido/métodos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Células Cultivadas , Cromogranina A/metabolismo , Hipocampo/citologia , Proteínas de Membrana/metabolismo , Camundongos , Ratos , Coloração e Rotulagem , Fixação de Tecidos
2.
eNeuro ; 2(6)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665164

RESUMO

Depolarization of neurons in 3-week-old rat hippocampal cultures promotes a rapid increase in the density of surface NMDA receptors (NRs), accompanied by transient formation of nonsynaptic NMDA receptor clusters or NR islands. Islands exhibit cytoplasmic dense material resembling that at postsynaptic densities (PSDs), and contain typical PSD components, including MAGUKS (membrane-associated guanylate kinases), GKAP, Shank, Homer, and CaMKII detected by pre-embedding immunogold electron microscopy. In contrast to mature PSDs, islands contain more NMDA than AMPA receptors, and more SAP102 than PSD-95, features that are shared with nascent PSDs in developing synapses. Islands do not appear to be exocytosed or endocytosed directly as preformed packages because neurons lacked intracellular vacuoles containing island-like structures. Islands form and disassemble upon depolarization of neurons on a time scale of 2-3 min, perhaps representing an initial stage in synaptogenesis.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Guanilato Quinases/análise , Guanilato Quinases/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA/análise , Sinapses/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(50): E6983-92, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604311

RESUMO

The postsynaptic density (PSD)-95 family of membrane-associated guanylate kinases (MAGUKs) are major scaffolding proteins at the PSD in glutamatergic excitatory synapses, where they maintain and modulate synaptic strength. How MAGUKs underlie synaptic strength at the molecular level is still not well understood. Here, we explore the structural and functional roles of MAGUKs at hippocampal excitatory synapses by simultaneous knocking down PSD-95, PSD-93, and synapse-associated protein (SAP)102 and combining electrophysiology and transmission electron microscopic (TEM) tomography imaging to analyze the resulting changes. Acute MAGUK knockdown greatly reduces synaptic transmission mediated by α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) and N-methyl-d-aspartate receptors (NMDARs). This knockdown leads to a significant rise in the number of silent synapses, diminishes the size of PSDs without changes in pre- or postsynaptic membrane, and depletes the number of membrane-associated PSD-95-like vertical filaments and transmembrane structures, identified as AMPARs and NMDARs by EM tomography. The differential distribution of these receptor-like structures and dependence of their abundance on PSD size matches that of AMPARs and NMDARs in the hippocampal synapses. The loss of these structures following MAGUK knockdown tracks the reduction in postsynaptic AMPAR and NMDAR transmission, confirming the structural identities of these two types of receptors. These results demonstrate that MAGUKs are required for anchoring both types of glutamate receptors at the PSD and are consistent with a structural model where MAGUKs, corresponding to membrane-associated vertical filaments, are the essential structural proteins that anchor and organize both types of glutamate receptors and govern the overall molecular organization of the PSD.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Densidade Pós-Sináptica/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ratos
4.
Curr Biol ; 24(14): 1565-1572, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24954051

RESUMO

BACKGROUND: Trichoplax adhaerens is the best-known member of the phylum Placozoa, one of the earliest-diverging metazoan phyla. It is a small disk-shaped animal that glides on surfaces in warm oceans to feed on algae. Prior anatomical studies of Trichoplax revealed that it has a simple three-layered organization with four somatic cell types. RESULTS: We reinvestigate the cellular organization of Trichoplax using advanced freezing and microscopy techniques to identify localize and count cells. Six somatic cell types are deployed in stereotyped positions. A thick ventral plate, comprising the majority of the cells, includes ciliated epithelial cells, newly identified lipophil cells packed with large lipid granules, and gland cells. Lipophils project deep into the interior, where they alternate with regularly spaced fiber cells whose branches contact all other cell types, including cells of the dorsal and ventral epithelium. Crystal cells, each containing a birefringent crystal, are arrayed around the rim. Gland cells express several proteins typical of neurosecretory cells, and a subset of them, around the rim, also expresses an FMRFamide-like neuropeptide. CONCLUSIONS: Structural analysis of Trichoplax with significantly improved techniques provides an advance in understanding its cell types and their distributions. We find two previously undetected cell types, lipohil and crystal cells, and an organized body plan in which different cell types are arranged in distinct patterns. The composition of gland cells suggests that they are neurosecretory cells and could control locomotor and feeding behavior.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Células Epiteliais/metabolismo , Neurônios/metabolismo , Neurossecreção/fisiologia , Placozoa/anatomia & histologia , Placozoa/citologia , Animais , Células Epiteliais/classificação , Epitélio/metabolismo , Neurônios/classificação
5.
J Neurosci ; 31(13): 4834-43, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21451021

RESUMO

The number of AMPA receptors at synapses depends on receptor cycling. Because receptors diffuse rapidly in plasma membranes, their exocytosis and endocytosis need not occur near synapses. Here, pre-embedding immunogold electron microscopy is applied to dissociated rat hippocampal cultures to provide sensitive, high-resolution snapshots of the distribution of surface AMPA receptors in spines, dendrites, and cell bodies that will be informative about trafficking of AMPA receptors. The density of the label for GluR2 varies, but is consistent throughout cell body and dendrites in each individual neuron, except at postsynaptic densities (PSDs), where it is typically higher. Glutamate receptor 2 (GluR2) labels at PSDs significantly increase after synaptic activation by glycine treatment and increase further upon depolarization by high K(+). Islands of densely packed labels have consistent size and density but vary in frequency under different experimental conditions. These patches of label, which occur on plasma membranes of cell bodies and dendrites but not near PSDs, are taken to be the aftermath of exocytosis of AMPA receptors. A subpopulation of clathrin-coated pits in cell bodies and dendrites label for GluR2, and the number and amount of label in individual pits increase after NMDA treatment. Coated pits near synapses typically lack GluR2 label under basal conditions, but ∼40% of peri-PSD pits label for GluR2 after NMDA treatment. Thus, exocytosis and endocytosis of AMPA receptors occur mainly at extrasynaptic locations on cell bodies and dendrites. Receptors are not preferentially exocytosed near PSDs, but may be removed via endocytosis at peri-PSD locations after activation of NMDA receptors.


Assuntos
Membrana Celular/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Membrana Celular/ultraestrutura , Células Cultivadas , Endocitose/fisiologia , Exocitose/fisiologia , Feminino , Hipocampo/ultraestrutura , Masculino , Neurônios/ultraestrutura , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
6.
J Neurosci ; 31(17): 6329-38, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21525273

RESUMO

PSD-95, a membrane-associated guanylate kinase, is the major scaffolding protein in the excitatory postsynaptic density (PSD) and a potent regulator of synaptic strength. Here we show that PSD-95 is in an extended configuration and positioned into regular arrays of vertical filaments that contact both glutamate receptors and orthogonal horizontal elements layered deep inside the PSD in rat hippocampal spine synapses. RNA interference knockdown of PSD-95 leads to loss of entire patches of PSD material, and electron microscopy tomography shows that the patchy loss correlates with loss of PSD-95-containing vertical filaments, horizontal elements associated with the vertical filaments, and putative AMPA receptor-type, but not NMDA receptor-type, structures. These observations show that the orthogonal molecular scaffold constructed from PSD-95-containing vertical filaments and their associated horizontal elements is essential for sustaining the three-dimensional molecular organization of the PSD. Our findings provide a structural basis for understanding the functional role of PSD-95 at the PSD.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/citologia , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Sinapses , Animais , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Feminino , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Imuno-Histoquímica/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lentivirus/fisiologia , Masculino , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão/métodos , Modelos Biológicos , Interferência de RNA/fisiologia , Ratos , Receptores de AMPA/metabolismo , Receptores de AMPA/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Transfecção/métodos
7.
Proc Natl Acad Sci U S A ; 105(11): 4453-8, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18326622

RESUMO

Much is known about the composition and function of the postsynaptic density (PSD), but less is known about its molecular organization. We use EM tomography to delineate the organization of PSDs at glutamatergic synapses in rat hippocampal cultures. The core of the PSD is dominated by vertically oriented filaments, and ImmunoGold labeling shows that PSD-95 is a component of these filaments. Vertical filaments contact two types of transmembrane structures whose sizes and positions match those of glutamate receptors and intermesh with two types of horizontally oriented filaments lying 10-20 nm from the postsynaptic membrane. The longer horizontal filaments link adjacent NMDAR-type structures, whereas the smaller filaments link both NMDA- and AMPAR-type structures. The orthogonal, interlinked scaffold of filaments at the core of the PSD provides a structural basis for understanding dynamic aspects of postsynaptic function.


Assuntos
Sinapses , Animais , Membrana Celular/metabolismo , Proteína 4 Homóloga a Disks-Large , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Modelos Moleculares , Ratos , Receptores de Glutamato/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...