Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(18): 53397-53410, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36854946

RESUMO

Salvadora persica (SP) is an important medicinal plant. Numerous articles have been conducted on the leaf, the roots, and the stem of the plant, but there is little information about the seed. Thus, the present work tries to identify the chemical composition of SP seed bio-oil and investigates its use as an adsorbent for cyclohexane removal. This study extracted bio-oil from seeds using different polar and non-polar organic solvents. Two techniques have been used to determine the chemical composition of the bio-oil extracted: FTIR and GC-MS. Results show that the extracted bio-oil presented 13 new major organic bio-compounds in n-hexane and ethanol SP seed extracts. Moreover, the analytical results showed that the two extracts are complex and contained thiocyanic acid, benzene, 3-pyridine carboxaldehyde, benzyl nitrile, ethyl tridecanoate, ethyl oleate, and dodecanoic acid ethyl ester. Additionally, each technique of analysis showed that the extracted bio-oils from SP seeds are rich in non-polar compounds. Indeed, the major fatty acids obtained are pentadecylic acid, myristic acid, lauric acid, oleic acid, margaric acid, and tricosanoic acid. This work provides guidelines for identifying these compounds, among others, and offers a platform for using SP seeds as a herbal alternative for various chemical, industrial, and medical applications. Furthermore, the capacity of SP extracts for air pollution treatment, namely, the removal of cyclohexane in batch mode, was investigated. Results showed that cyclohexane adsorption could be a chemical process involving both monolayer and multilayer adsorption mechanisms. The pores and the grooves on the surface of the SP bio-oil extract helped in adsorbing the cyclohexane with an outstanding maximum removal capacity of about 674.23 mg/g and 735.75 mg/g, respectively, for the ethanol and hexane SP extracts, which is superior to many other recent adsorbents.


Assuntos
Poluentes Atmosféricos , Salvadoraceae , Poluentes Atmosféricos/análise , Adsorção , Óleos de Plantas/química , Sementes/química , Etanol/análise , Cicloexanos/análise
2.
Environ Sci Pollut Res Int ; 28(19): 24470-24485, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32337671

RESUMO

This research investigation proposes a new method for sustainable olive mill wastewater (OMW) treatment and handling. It is based on the combination of its impregnation onto raw cypress sawdust (RCS) followed by electrocoagulation. The retention of OMW compounds onto various RCS doses show an important decrease of its chemical oxygen demand (COD) and its main cation and anion content. The maximum retention efficiencies of COD, Na+, K+, Ca2+, Mg2+, Cl-, [Formula: see text], and [Formula: see text] were about 51.0%, 75.3%, 28.7%, 77.9%, 84.7%, 41.1%, 98.3%, and 90.9%, respectively, for the highest RCS dose (200 g L-1). This organic matter- and nutrient-loaded biomass could be thermochemically converted through pyrolysis into biofuel and biochar for energetic and agronomic purposes, respectively. The treatment by electrocoagulation of the pre-treated OMW using mild steel electrodes could be considered an attractive treatment method since 75.6% of COD removal efficiency was achieved. Besides, this approach permits a significant energy consumption reduction by 46% as compared with the electrocoagulation process alone. It allows also a significant improvement of the treated effluent quality in terms of both organic and mineral contents that could be reused for the irrigation of olive trees in the context of circular economy.


Assuntos
Cupressus , Olea , Eletrocoagulação , Resíduos Industriais/análise , Azeite de Oliva , Eliminação de Resíduos Líquidos , Águas Residuárias
3.
Sci Total Environ ; 755(Pt 1): 142531, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035975

RESUMO

The olive oil industry is an important economic sector in Mediterranean countries. However, oil production is unfortunately accompanied by the generation of huge amounts of olive mill solid wastes (OMSW) and olive mill wastewater (OMWW). In the present study, a strategy is proposed for converting these olive mill wastes into biochar through pyrolysis, for their later use as an organic amendment in agriculture. Specifically, two biochars were prepared from the pyrolysis of OMSW at 500 °C, either alone or impregnated with OMWW (OMSW-B and I-OMSW-B). The characterization of the OMSW and I-OMSW samples and their derived biochars showed that the fixed carbon and ash contents in the feedstocks increased by 38% and 11% respectively for OMSW-B, and by 37% and 12% respectively for I-OMSW-B. Interestingly, the impregnation process significantly increased Na, P, K, Ca and Fe contents in the produced biochars. The effect of OMSW-B and I-OMSW-B amendments at different application dose (1%, 2.5% and 5% wt/wt) on the enzymatic activity of an agricultural soil was performed at laboratory scale with a pot test. The experimental results showed that phosphatase and urease activity increased with biochar application rate; amendment with I-OMSW-B at 1%, 2.5% and 5% enhanced the phosphatase activity by 63%, 142% and 285% and urease activity by 50%, 116% and 149%, respectively. On the other hand, dehydrogenase and protease activities were higher for the application rate of 2.5% biochar. Biochar amendment promoted tomatoes seedling growth after 10 weeks, which was highest in the application rates of 2.5% and 5% for both OMSW-B and I-OSMW-B. Thus, the produced biochars had great potential to be used as biofertilizers in agriculture.


Assuntos
Solo , Solanum lycopersicum , Agricultura , Carvão Vegetal
4.
Sci Total Environ ; 733: 139314, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446075

RESUMO

Hydrothermal carbonization (HTC) is considered as a promising technique for wastes conversion into carbon rich materials for various energetic, environmental and agricultural applications. In this work, the HTC of olive mill wastewater (OMWW) was investigated at different temperatures (180-220 °C) and both, the solid (i.e., hydrochars) and the final process liquid derived from the thermal conversion process were deeply analyzed. Results showed that the solid yield was affected by the temperature, i.e., decrease from 57% to 25% for temperatures of 180 °C and 220 °C, respectively. Furthermore, the hydrochars presented an increasing fixed carbon percentage with the increase of the carbonization temperature, suggesting that decarboxylation is the main reaction driving the HTC process. The decrease in the O/C ratio promoted an increase of the high heating value (HHV) by 32% for hydrochar prepared at 220 °C. The process liquids were sampled and their organic contents were analyzed using GC-MS technique. Acids, alcohols, phenols and sugar derivatives were detected and their concentrations varied with carbonization temperatures. The assessment of the physico-chemical properties of the generated HTC by-products suggested the possible application of the hydrochars for energetic insights while the liquid fraction could be practical for in agricultural field.


Assuntos
Poluentes Ambientais , Olea , Carbono , Fertilizantes , Temperatura , Águas Residuárias , Água
5.
Environ Sci Pollut Res Int ; 24(22): 18240-18256, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28634802

RESUMO

This paper deals with the methylene blue molecule (MB) removal from synthetic and real textile wastewaters by alkali-treated orange tree sawdust (ATOS) under different dynamic conditions. Experimental results showed that MB removal efficiencies by ATOS increased when increasing initial dye concentrations and bed depths but decreased with the increase of the applied flow rates with a maximum adsorption capacity of about 110 mg g-1. Moreover, various empirical models were applied to predict the experimental breakthrough curves (BTCs) and to determine the characteristic adsorption parameters. The applied models successfully fitted data in the following order: Thomas ([Formula: see text] = 0.969), dose response ([Formula: see text] = 0.949), and Clark ([Formula: see text] = 0.874). ATOS was also found to efficiently remove dyes and other mineral pollutants such as chlorides, nitrates, and phosphates from real wastewaters. MB removal by ATOS involved not only cationic exchange but also complexation with acidic and basic functional groups. Moreover, important MB desorption yields from ATOS (more than 93%) were obtained when using saline solutions. All these results confirmed that NaOH-treated orange tree sawdust can be considered as a promising material for the removal of cationic dyes from industrial wastewaters.


Assuntos
Álcalis/química , Citrus/química , Corantes/química , Azul de Metileno/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/química , Indústria Têxtil , Madeira/análise
6.
Environ Sci Pollut Res Int ; 24(11): 9831-9846, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27726078

RESUMO

The present study investigates the alkaline modification of raw orange tree sawdust (ROS) for an optimal removal of methylene blue (MB), as a cationic dye model, from synthetic solutions. The effects of operating parameters, namely, sodium hydroxide (NaOH) concentrations, ROS doses in NaOH solutions, stirring times, and initial MB concentrations on dye removal efficiency, were followed in batch mode. The process optimization was performed through the response surface methodology approach (RSM) by using Minitab17 software. The results showed that the order of importance of the followed parameters was NaOH treatment concentrations > stirring times > initial MB concentrations > ROS doses in NaOH solutions. The optimal experimental conditions ensuring the maximal MB removal efficiency was found for a NaOH treatment concentration of 0.14 M, a stirring time of 1 h, a ROS dose in NaOH solutions of 50 g L-1, and an initial MB concentration of 69.5 mg L-1. Specific analyses of the raw and alkali-treated biomasses, e.g., SEM/EDS and XRD analyses, demonstrated an important modification of the crystalline structure of the wooden material and a significant increase in its surface basic functional groups. Kinetic and isotherm studies of MB removal from synthetic solutions by ROS and the alkali-treated material (ATOS) showed that for both adsorbents, the pseudo-second-order and Langmuir model fitted the best the experimental data, respectively, which indicates that MB removal might be mainly a chemical and a monolayer process. Furthermore, thanks to the chemical modification of the ROS, the MB maximal uptake capacity has increased from about 39.7 to 78.7 mg g-1. On the other hand, due to the competition phenomenon, the coexistence of MB and Zn(II) ions could significantly decrease the MB removal efficiency. A maximal decrease of about 32 % was registered for an initial Zn(II) concentration of 140 mg L-1. Desorption experiments undertaken at natural pH (without adjustment: pH = 6) and with different NaCl concentrations emphasized that the adsorbed MB could be significantly desorbed from both the tested materials, offering their possible reuse as efficient adsorbents. All these results confirmed that NaOH-treated orange tree sawdust could be considered as an efficient, economic, and ecological alternative for the removal of cationic dyes from industrial wastewaters.


Assuntos
Biomassa , Poluentes Químicos da Água , Adsorção , Agricultura , Corantes/química , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...