Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 113(10): 3588-99, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25761953

RESUMO

The optic disk is a region of the retina consisting mainly of ganglion cell axons and blood vessels, which generates a visual scotoma known as the blind spot (BS). Information present in the surroundings of the BS can be used to complete the missing information. However, the neuronal mechanisms underlying these perceptual phenomena are poorly understood. We investigate the topography of the BS representation (BSR) in cortical area V1 of the capuchin monkey, using single and multiple electrodes. Receptive fields (RFs) of neurons inside the BSR were investigated using two distinct automatic bias-free mapping methods. The first method (local mapping) consisted of randomly flashing small white squares. For the second mapping method (global mapping), we used a single long bar that moved in one of eight directions. The latter stimulus was capable of eliciting neuronal activity inside the BSR, possibly attributable to long-range surround activity taking place outside the borders of the BSR. Importantly, we found that the neuronal activity inside the BSR is organized topographically in a manner similar to that found in other portions of V1. On average, the RFs inside the BS were larger than those outside. However, no differences in orientation or direction tuning were found between the two regions. We propose that area V1 exhibits a continuous functional topographic map, which is not interrupted in the BSR, as expected by the distribution of photoreceptors in the retina. Thus V1 topography is better described as "visuotopic" rather than as a discontinuous "retinotopic" map.


Assuntos
Neurônios/fisiologia , Disco Óptico/fisiologia , Córtex Visual/citologia , Campos Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Cebus , Masculino , Estimulação Luminosa , Vias Visuais/fisiologia , Percepção Visual/fisiologia
2.
J Neurosci Methods ; 221: 112-26, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24084390

RESUMO

An important issue for neurophysiological studies of the visual system is the definition of the region of the visual field that can modify a neuron's activity (i.e., the neuron's receptive field - RF). Usually a trade-off exists between precision and the time required to map a RF. Manual methods (qualitative) are fast but impose a variable degree of imprecision, while quantitative methods are more precise but usually require more time. We describe a rapid quantitative method for mapping visual RFs that is derived from computerized tomography and named back-projection. This method finds the intersection of responsive regions of the visual field based on spike density functions that are generated over time in response to long bars moving in different directions. An algorithm corrects the response profiles for latencies and allows for the conversion of the time domain into a 2D-space domain. The final product is an RF map that shows the distribution of the neuronal activity in visual-spatial coordinates. In addition to mapping the RF, this method also provides functional properties, such as latency, orientation and direction preference indexes. This method exhibits the following beneficial properties: (a) speed; (b) ease of implementation; (c) precise RF localization; (d) sensitivity (this method can map RFs based on few responses); (e) reliability (this method provides consistent information about RF shapes and sizes, which will allow for comparative studies); (f) comprehensiveness (this method can scan for RFs over an extensive area of the visual field); (g) informativeness (it provides functional quantitative data about the RF); and (h) usefulness (this method can map RFs in regions without direct retinal inputs, such as the cortical representations of the optic disc and of retinal lesions, which should allow for studies of functional connectivity, reorganization and neural plasticity). Furthermore, our method allows for precise mapping of RFs in a 30° by 30° area of the visual field for an array of microelectrodes of any size in less than 6 min.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Córtex Visual/fisiologia , Animais , Haplorrinos , Processamento de Imagem Assistida por Computador
3.
Proc Natl Acad Sci U S A ; 109(6): 2126-31, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308343

RESUMO

Primates depend for their survival on their ability to understand their social environment, and their behavior is often shaped by social circumstances. We report that the orbitofrontal cortex, a brain region involved in motivation and reward, is tuned to social information. Macaque monkeys worked to collect rewards for themselves and two monkey partners. Behaviorally, monkeys discriminated between cues signaling large and small [corrected] rewards, and between cues signaling rewards to self only and reward to both self and another monkey, with a preference for the former over the latter in both instances. Single neurons recorded during this task encoded the meaning of visual cues that predicted the magnitude of future rewards, as well as the motivational value of rewards obtained in a social context. Furthermore, neuronal activity was found to track momentary social preferences and partner's identity and social rank. The orbitofrontal cortex thus contains key neuronal mechanisms for the evaluation of social information.


Assuntos
Córtex Cerebral/fisiologia , Macaca/fisiologia , Comportamento Social , Animais , Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Feminino , Motivação/fisiologia , Neurônios/fisiologia , Recompensa , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...