Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Plant Physiol ; 231: 31-40, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30212659

RESUMO

Rhamnogalacturonan I (RG-I) is a domain of plant cell wall pectin. The rhamnogalacturonan lyase (RGL) enzyme (EC 4.2.2.23) degrades RG-I by cleaving the α-1,4 glycosidic bonds located between the l-rhamnose and d-galacturonic residues of the main chain. While RGL's biochemical mode of action is well known, its effects on plant physiology remain unclear. To investigate the role of the RGL enzyme in plants, we have expressed the Solyc11g011300 gene under a constitutive promoter (CaMV35S) in tomato cv. 'Ohio 8245' and evaluated the expression of this and other RGL genes, enzymatic activity and alterations in vegetative tissue, and tomato physiology in transformed lines compared to the positive control (plants harboring the pCAMBIA2301 vector) and the isogenic line. The highest expression levels of the Solyc11g011300, Solyc04g076630, and Solyc04g076660 genes were observed in leaves and roots and at 10 and 20 days after anthesis (DAA). Transgenic lines exhibited lower RGL activity in leaves and roots and during fruit ripening, whereas higher activity was observed at 10, 20, and 30 DAA than in the isogenic line and positive control. Both transgenic lines showed a lower number of seeds and fruits, higher root length, and less pollen germination percentage and viability. In red ripe tomatoes, transgenic fruits showed greater firmness, longer shelf life, and reduced shriveling than did the isogenic line. Additionally, a delay of one week in fruit ripening in transgenic fruits was also recorded. Altogether, our data demonstrate that the Solyc11g011300 gene participates in pollen tube germination, fruit firmness, and the fruit senescence phenomena that impact postharvest shelf life.


Assuntos
Frutas/crescimento & desenvolvimento , Genes de Plantas/fisiologia , Pectinas/metabolismo , Proteínas de Plantas/genética , Polissacarídeo-Liases/genética , Solanum lycopersicum/genética , Frutas/enzimologia , Frutas/metabolismo , Perfilação da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Solanum lycopersicum/enzimologia , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/metabolismo , Tubo Polínico/crescimento & desenvolvimento
2.
J Plant Physiol ; 229: 175-184, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30121402

RESUMO

The enzyme rhamnogalacturonan lyase (RGL) cleaves α-1,4 glycosidic bonds located between rhamnose and galacturonic acid residues in the main chain of rhamnogalacturonan-I (RG-I), a component of the plant cell wall polymer pectin. Although the mode of action of RGL is well known, its physiological functions associated with fruit biology are less understood. Here, we generated transgenic tomato plants expressing the ß-glucuronidase (GUS) reporter gene under the control of a -504 bp or a -776 bp fragment of the promoter of a tomato RGL gene, Solyc11g011300. GUS enzymatic activity and the expression levels of GUS and Solyc11g011300 were measured in a range of organs and fruit developmental stages. GUS staining was undetectable in leaves and roots, but high GUS enzymatic activity was detected in flowers and red ripe (RR) fruits. Maximal expression levels of Solyc11g011300 were detected at the RR developmental stage. GUS activity was 5-fold higher in flowers expressing GUS driven by the -504 bp RGL promoter fragment (RGFL3::GUS) than in the isogenic line, and 1.7-fold higher when GUS gene was driven by the -776 bp RGL promoter fragment (RGLF2::GUS) or the constitutive CaMV35S promoter. Quantitative real-time polymerase chain reaction analysis showed that the highest expression of GUS was in fruits at 40 days after anthesis, for both promoter fragments. The promoter of Solyc11g011300 is predicted to contain cis-acting elements, and to be active in pollen grains, pollen tubes, flowers and during tomato fruit ripening, suggesting that the Solyc11g011300 promoter is transcriptionally active and organ-specific.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Solanum lycopersicum/genética , Parede Celular/genética , Parede Celular/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sequências Reguladoras de Ácido Nucleico/fisiologia
3.
Sci Rep ; 7: 46163, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425468

RESUMO

Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.


Assuntos
Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mangifera/genética , Epiderme Vegetal/genética , Transcriptoma/genética , Transporte Biológico , Anotação de Sequência Molecular , Análise de Sequência de RNA , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...