Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 137: 104780, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991249

RESUMO

Spontaneous, recurrent spreading depolarizations (SD) are increasingly more appreciated as a pathomechanism behind ischemic brain injuries. Although the prostaglandin F2α - FP receptor signaling pathway has been proposed to contribute to neurodegeneration, it has remained unexplored whether FP receptors are implicated in SD or the coupled cerebral blood flow (CBF) response. We set out here to test the hypothesis that FP receptor blockade may achieve neuroprotection by the inhibition of SD. Global forebrain ischemia/reperfusion was induced in anesthetized rats by the bilateral occlusion and later release of the common carotid arteries. An FP receptor antagonist (AL-8810; 1 mg/bwkg) or its vehicle were administered via the femoral vein 10 min later. Two open craniotomies on the right parietal bone served the elicitation of SD with 1 M KCl, and the acquisition of local field potential. CBF was monitored with laser speckle contrast imaging over the thinned parietal bone. Apoptosis and microglia activation, as well as FP receptor localization were evaluated with immunohistochemistry. The data demonstrate that the antagonism of FP receptors suppressed SD in the ischemic rat cerebral cortex and reduced the duration of recurrent SDs by facilitating repolarization. In parallel, FP receptor antagonism improved perfusion in the ischemic cerebral cortex, and attenuated hypoemic CBF responses associated with SD. Further, FP receptor antagonism appeared to restrain apoptotic cell death related to SD recurrence. In summary, the antagonism of FP receptors (located at the neuro-vascular unit, neurons, astrocytes and microglia) emerges as a promising approach to inhibit the evolution of SDs in cerebral ischemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Circulação Cerebrovascular/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Dinoprosta/análogos & derivados , Animais , Isquemia Encefálica/fisiopatologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Infarto Cerebral/tratamento farmacológico , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Dinoprosta/farmacologia , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/fisiopatologia , Prostaglandinas/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
2.
Front Aging Neurosci ; 11: 301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780917

RESUMO

The age-related (mal)adaptive modifications of the cerebral microvascular system have been implicated in cognitive impairment and worse outcomes after ischemic stroke. The magnitude of the hyperemic response to spreading depolarization (SD), a recognized principle of ischemic lesion development has also been found to be reduced by aging. Here, we set out to investigate whether the SD-coupled reactivity of the pial arterioles is subject to aging, and whether concomitant vascular rarefaction may contribute to the age-related insufficiency of the cerebral blood flow (CBF) response. CBF was assessed with laser-speckle contrast analysis (LASCA), and the tone adjustment of pial arterioles was followed with intrinsic optical signal (IOS) imaging at green light illumination through a closed cranial window created over the parietal cortex of isoflurane-anesthetized young (2 months old) and old (18 months old) male Sprague-Dawley rats. Global forebrain ischemia and later reperfusion were induced by the bilateral occlusion and later release of both common carotid arteries. SDs were elicited repeatedly with topical 1M KCl. Pial vascular density was measured in green IOS images of the brain surface, while the density and resting diameter of the cortical penetrating vasculature was estimated with micro-computed tomography of paraformaldehyde-fixed cortical samples. Whilst pial arteriolar dilation in response to SD or ischemia induction were found reduced in the old rat brain, the density and resting diameter of pial cortical vessels, and the degree of SD-related oligemia emerged as variables unaffected by age in our experiments. Spatial flow distribution analysis identified an age-related shift to a greater representation of higher flow ranges in the reperfused cortex. According to our data, impairment of functional arteriolar dilation, at preserved vascular density and resting vascular tone, may be implicated in the age-related deficit of the CBF response to SD, and possibly in the reduced efficacy of neurovascular coupling in the aging brain. SD has been recognized as a potent pathophysiological contributor to ischemic lesion expansion, in part because of the insufficiency of the associated CBF response. Therefore, the age-related impairment of cerebral vasoreactivity as shown here is suggested to contribute to the age-related acceleration of ischemic lesion development.

3.
Neurobiol Dis ; 119: 41-52, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30053571

RESUMO

Recurrent spreading depolarizations occur in the cerebral cortex from minutes up to weeks following acute brain injury. Clinical evidence suggests that the immediate reduction of cerebral blood flow in response to spreading depolarization importantly contributes to lesion progression as the wave propagates over vulnerable tissue zones, characterized by potassium concentration already elevated prior to the passage of spreading depolarization. Here we demonstrate with two-photon microscopy in anesthetized mice that initial vasoconstriction in response to SD triggered experimentally with 1 M KCl is coincident in space and time with the large extracellular accumulation of potassium, as shown with a potassium indicator fluorescent dye. Moreover, pharmacological manipulations in combination with the use of potassium-sensitive microelectrodes suggest that large-conductance Ca2+-activated potassium (BK) channels and L-type voltage-gated calcium channels play significant roles in the marked initial vasoconstriction under elevated baseline potassium. We propose that potassium efflux through BK channels is a central component in the devastating neurovascular effects of spreading depolarizations in tissue at risk.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...