Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 24(32): 25061-25070, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28920186

RESUMO

2-Ethylhexyl methoxycinnamate (EHMC) is one of the most used ultraviolet filters in personal care products. It undergoes cis/trans isomerization in sunlight, and there is limited toxicological understanding of the effects of the cis-isomer. It is known that two geometric isomers of one compound can have different physico-chemical properties and effects. However, there are no studies focusing on toxicokinetics of EHMC isomerization products to compare their potential difference in dermal exposure to cis-EHMC and trans-EHMC due to the difference in their dermatotoxicokinetics. In this study, dermal absorption of the parental trans-EHMC and its cis isomer was studied. A commercially available sunscreen lotion containing trans-EHMC and spiked with laboratory-prepared cis-EHMC was locally applied on the forearm skin of two volunteers. After 8 h of skin exposure, the stratum corneum (SC) layer was removed by tape stripping. The removed thickness of the SC was determined spectrophotometrically using a total protein assay. The concentration of both isomers in the removed SC was measured by HPLC-DAD. A new diffusion and permeability coefficient of both EHMC isomers in SC were determined by Fick's second law of diffusion in vivo. The difference in dermatotoxicokinetic parameters between the two isomers was not statistically significant. However, separate toxicological studies of isomeric forms and the determination of their dermatotoxicokinetic parameters are crucial for refinement of human risk assessment.


Assuntos
Cinamatos/farmacocinética , Epiderme/metabolismo , Absorção Cutânea , Protetores Solares/farmacocinética , Adulto , Cinamatos/química , Feminino , Humanos , Estereoisomerismo , Protetores Solares/química , Toxicocinética
2.
Environ Int ; 108: 1-10, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28772152

RESUMO

Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) from the group of persistent organic pollutants are detected in human tissues years or even decades after their ban. Exposure to PCBs and OCPs can pose risks to human health. In the present study, we calculated the daily intakes of PCBs and OCPs in the Czech population and investigated the long-term trends of human exposure to POPs. Data on POP concentrations from a 16-year period of breast-milk monitoring were used. A toxicokinetic model with consideration of compound-specific elimination half-lives was used to calculate the mothers' daily intake of PCBs and OCPs representing the intake of POPs by all exposure routes. The calculated intakes were compared with dietary intakes calculated by the Czech National Institute of Public Health. The comparison shows good agreement of both intake estimates with decreasing intake trends of POPs in the Czech population in the time period studied. However, several fluctuations with peaks of higher levels were observed in both datasets which are not typical for the period after the ban of use and production of POPs. The available evidence suggests that the increases in chemical concentrations might be caused by food contamination. The calculated intakes of compounds with longer elimination half-lives, such as higher-chlorinated PCBs, were higher in older mothers. This "memory effect" was already observed in other studies and indicates higher exposure in earlier life periods of the mother. Our results suggest that exposure to POPs is still relevant for the Czech population in the period after the ban of the use and production of POPs (post-ban period), especially via food ingestion, though the intake trends are decreasing. Possible food contamination by POPs in the post-ban period requires further assessment.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Hidrocarbonetos Clorados/análise , Leite Humano/química , Bifenilos Policlorados/análise , Adolescente , Adulto , República Tcheca , Feminino , Humanos , Mães , Praguicidas/análise , Fatores de Tempo , Adulto Jovem
3.
Sci Total Environ ; 593-594: 18-26, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340478

RESUMO

2-ethylhexyl 4-methoxycinnamate (EHMC), used in many categories of personal care products (PCPs), is one of the most discussed ultraviolet filters because of its endocrine-disrupting effects. EHMC is unstable in sunlight and can be transformed from trans-EHMC to emergent cis-EHMC. Toxicological studies are focusing only on trans-EHMC; thus the toxicological data for cis-EHMC are missing. In this study, the in vitro genotoxic effects of trans- and cis-EHMC on adult human liver stem cells HL1-hT1 and human-derived lymphoblastoid cells TK-6 using a high-throughput comet assay were studied. TK-6 cells treated with cis-EHMC showed a high level of DNA damage when compared to untreated cells in concentrations 1.56 to 25µgmL-1. trans-EHMC showed genotoxicity after exposure to the two highest concentrations 12.5 and 25µgmL-1. The increase in DNA damage on HL1-hT1 cells induced by cis-EHMC and trans-EHMC was detected at the concentration 25µgmL-1. The No observed adverse effect level (NOAEL, mg kg-1bwday-1) was determined using a Quantitative in vitro to in vivo extrapolation (QIVIVE) approach: NOAELtrans-EHMC=3.07, NOAELcis-EHMC=0.30 for TK-6 and NOAELtrans-EHMC=26.46, NOAELcis-EHMC=20.36 for HL1-hT1. The hazard index (HI) was evaluated by comparing the reference dose (RfD, mgkg-1bwday-1) obtained from our experimental data with the chronic daily intake (CDI) of the female population. Using comet assay experimental data with the more sensitive TK-6 cells, HIcis-EHMC was 7 times higher than HItrans-EHMC. In terms of CDI, relative contributions were; dermal exposure route>oral>inhalation. According to our results we recommend the RfDtrans-EHMC=0.20 and RfDcis-EHMC=0.02 for trans-EHMC and cis-EHMC, respectively, to use for human health risk assessment. The significant difference in trans-EHMC and cis-EHMC response points to the need for toxicological reevaluation and application reassessment of both isomers in PCPs.


Assuntos
Cinamatos/efeitos adversos , Dano ao DNA , Linfócitos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Protetores Solares/efeitos adversos , Linhagem Celular , Cosméticos/efeitos adversos , Feminino , Humanos , Fígado/citologia , Medição de Risco , Luz Solar
4.
Environ Toxicol ; 32(2): 569-580, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27030676

RESUMO

Ethylhexyl methoxycinnamate (EHMC) is a widely used UV filter present in a large number of personal care products (PCPs). Under normal conditions, EHMC occurs in a mixture of two isomers: trans-EHMC and cis-EHMC in a ratio of 99:1. When exposed to sunlight, the trans isomer is transformed to the less stable cis isomer and the efficiency of the UV filter is reduced. To date, the toxicological effects of the cis-EHMC isomer remain largely unknown. We developed a completely new method for preparing cis-EHMC. An EHMC technical mixture was irradiated using a UV lamp and 98% pure cis-EHMC was isolated from the irradiated solution using column chromatography. The genotoxic effects of the isolated cis-EHMC isomer and the nonirradiated trans-EHMC were subsequently measured using two bioassays (SOS chromotest and UmuC test). In the case of trans-EHMC, significant genotoxicity was observed using both bioassays at the highest concentrations (0.5 - 4 mg mL-1 ). In the case of cis-EHMC, significant genotoxicity was only detected using the UmuC test at concentrations of 0.25 - 1 mg mL-1 . Based on these results, the NOEC was calculated for both cis- and trans-EHMC, 0.038 and 0.064 mg mL-1 , respectively. Risk assessment of dermal, oral and inhalation exposure to PCPs containing EHMC was carried out for a female population using probabilistic simulation and by using Quantitative in vitro to in vivo extrapolation (QIVIVE). The risk of cis-EHMC was found to be ∼1.7 times greater than trans-EHMC. In the case of cis-EHMC, a hazard index of 1 was exceeded in the 92nd percentile. Based on the observed differences between the isomers, EHMC application in PCPs requires detailed reassessment. Further exploration of the toxicological effects and properties of cis-EHMC is needed in order to correctly predict risks posed to humans and the environment. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 569-580, 2017.


Assuntos
Cinamatos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Protetores Solares/toxicidade , Cromatografia Gasosa , Cinamatos/química , Cosméticos , Feminino , Humanos , Isomerismo , Testes de Mutagenicidade , Medição de Risco , Salmonella typhimurium/genética , Protetores Solares/química
5.
Chemosphere ; 145: 148-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26688251

RESUMO

Due to their widespread usage, people are exposed to pesticides on a daily basis. Although these compounds may have adverse effects on their health, there is a gap in the data and the methodology needed to reliably quantify the risks of non-occupational human dermal exposure to pesticides. We used Franz cells and human skin in order to measure the dermal absorption kinetics (steady-state flux, lag time and permeability coefficient) of Carbendazim and Simazine. These parameters were then used to refine the dermal exposure model and a probabilistic simulation was used to quantify risks resulting from exposure to pesticide-polluted waters. The experimentally derived permeability coefficient was 0.0034 cm h(-1) for Carbendazim and 0.0047 cm h(-1) for Simazine. Two scenarios (varying exposure duration and concentration, i.e. environmentally relevant and maximum solubility) were used to quantify the human health risks (hazard quotients) for Carbendazim and Simazine. While no risks were determined in the case of either scenario, the permeability coefficient, which is concentration independent and donor, formulation, compound and membrane specific, may be used in other scenarios and exposure models to quantify more precisely the dermally absorbed dose during exposure to polluted water. To the best of our knowledge, the dermal absorption kinetics parameters defined here are being published for the first time. The usage of experimental permeability parameters in combination with probabilistic risk assessment thus provides a new tool for quantifying the risks of human dermal exposure to pesticides.


Assuntos
Benzimidazóis/farmacocinética , Carbamatos/farmacocinética , Modelos Biológicos , Praguicidas/farmacocinética , Simazina/farmacocinética , Absorção Cutânea , Pele/efeitos dos fármacos , Adulto , Feminino , Humanos , Técnicas In Vitro , Cinética , Masculino , Pessoa de Meia-Idade , Permeabilidade , Medição de Risco , Pele/metabolismo
6.
Environ Sci Pollut Res Int ; 22(14): 10713-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752630

RESUMO

Dermal absorption of the herbicide chlorotoluron was measured using ex vivo pig skin in Franz diffusion cells in an automated system. The steady-state flux was calculated, as well as the permeability coefficient, which is 0.0038 cm h(-1). The permeability coefficient (Kp) is a key factor when predicting human health risks resulting from dermal exposition to a substance. The experimental determination of this parameter filled data gaps regarding the dermal absorption of chlorotoluron. The experimental permeability coefficient was subsequently used to calculate the dermal absorbed dose during some exposure scenarios. Reference doses were revised, and screening risk assessment process was done to calculate the risks resulting from exposure to chlorotoluron. This refined new approach proved to be a useful tool for human health risk assessment in the areas with these herbicide applications. Graphical Abstract An experimentally refined tool to assess the risks of the human dermal exposure to herbicide chlorotoluron.


Assuntos
Herbicidas/metabolismo , Compostos de Fenilureia/metabolismo , Animais , Herbicidas/toxicidade , Humanos , Masculino , Permeabilidade , Compostos de Fenilureia/toxicidade , Medição de Risco , Pele/metabolismo , Absorção Cutânea , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...