Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352479

RESUMO

Epstein-Barr virus (EBV) is the causative agent for multiple neoplastic diseases of epithelial and lymphocytic origin1-3. The heterogeneity of the viral elements expressed and the mechanisms by which these coding and non-coding genes maintain cancer cell properties in vivo remain elusive4,5. Here we conducted a multi-modal transcriptomic analysis of EBV-associated neoplasms and identified that the ubiquitously expressed RPMS1 non-coding RNAs support cancer cell properties by disruption of the interferon response. Our map of EBV expression shows a variable, but pervasive expression of BNLF2 discerned from the overlapping LMP1 RNA in bulk sequencing data. Using long-read single-molecule sequencing, we identified three new viral elements within the RPMS1 gene. Furthermore, single-cell sequencing datasets allowed for the separation of cancer cells and healthy cells from the same tissue biopsy and the characterization of a microenvironment containing interferon gamma excreted by EBV-stimulated T-lymphocytes. In comparison with healthy epithelium, EBV-transformed cancer cells exhibited increased proliferation and inhibited immune response induced by the RPMS1-encoded microRNAs. Our atlas of EBV expression shows that the EBV-transformed cancer cells express high levels of non-coding RNAs originating from RPMS1 and that the oncogenic properties are maintained by RPMS1 microRNAs. Through bioinformatic disentanglement of single cells from cancer tissues we identified a positive feedback loop where EBV-activated immune cells stimulate cancer cells to proliferate, which in turn undergo viral reactivation and trigger an immune response.

2.
Clin Cancer Res ; 28(23): 5221-5230, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165913

RESUMO

PURPOSE: The favorable prognosis of stage I and II nasopharyngeal carcinoma (NPC) has motivated a search for biomarkers for the early detection and risk assessment of Epstein-Barr virus (EBV)-associated NPC. Although EBV seropositivity is ubiquitous among adults, a spike in antibodies against select EBV proteins is a harbinger of NPC. A serologic survey would likely reveal which EBV antibodies could discriminate those at risk of developing NPC. EXPERIMENTAL DESIGN: Lysates from a new EBV mammalian expression library were used in a denaturing multiplex immunoblot assay to survey antibodies against EBV in sera collected from healthy individuals who later developed NPC (incident cases) in a prospective cohort from Singapore and validated in an independent cohort from Shanghai, P.R. China. RESULTS: We show that IgA against EBV nuclear antigen 1 (EBNA1) discriminated incident NPC cases from matched controls with 100% sensitivity and 100% specificity up to 4 years before diagnosis in both Singapore and Shanghai cohorts. Incident NPC cases had a greater IgG repertoire against lytic-classified EBV proteins, and the assortment of IgA against EBV proteins detected by the immunoblot assay increased closer to diagnosis. CONCLUSIONS: Although NPC tumors consistently harbor latent EBV, the observed heightened systemic and mucosal immunity against lytic-classified antigens years prior to clinical diagnosis is consistent with enhanced lytic transcription. We conclude that an expanding EBV mucosal reservoir (which can be latent and/or lytic) is a risk factor for NPC. This presents an opportunity to identify those at risk of developing NPC using IgA against EBNA1 as a biomarker.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Adulto , Humanos , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4/genética , Carcinoma Nasofaríngeo/diagnóstico , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Estudos Prospectivos , Imunoglobulina A , China , Anticorpos Antivirais , Biomarcadores
3.
RNA ; 27(10): 1127-1139, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253685

RESUMO

Comprehensive characterization of differentially spliced RNA transcripts with nanopore sequencing is limited by bioinformatics tools that are reliant on existing annotations. We have developed FLAME, a bioinformatics pipeline for alternative splicing analysis of gene-specific or transcriptome-wide long-read sequencing data. FLAME is a Python-based tool aimed at providing comprehensible quantification of full-length splice variants, reliable de novo recognition of splice sites and exons, and representation of consecutive exon connectivity in the form of a weighted adjacency matrix. Notably, this workflow circumvents issues related to inadequate reference annotations and allows for incorporation of short-read sequencing data to improve the confidence of nanopore sequencing reads. In this study, the Epstein-Barr virus long noncoding RNA RPMS1 was used to demonstrate the utility of the pipeline. RPMS1 is ubiquitously expressed in Epstein-Barr virus associated cancer and known to undergo ample differential splicing. To fully resolve the RPMS1 spliceome, we combined gene-specific nanopore sequencing reads from a primary gastric adenocarcinoma and a nasopharyngeal carcinoma cell line with matched publicly available short-read sequencing data sets. All previously reported splice variants, including putative ORFs, were detected using FLAME. In addition, 32 novel exons, including two intron retentions and a cassette exon, were discovered within the RPMS1 gene.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Splicing de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Software , Benchmarking , Linhagem Celular Tumoral , Biologia Computacional/métodos , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Éxons , Herpesvirus Humano 4/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons , Sequenciamento por Nanoporos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Análise de Sequência de RNA
4.
PLoS Pathog ; 17(4): e1009041, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914843

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus with latent and lytic cycles. EBV replicates in the stratified epithelium but the nasopharynx is also composed of pseudostratified epithelium with distinct cell types. Latent infection is associated with nasopharyngeal carcinoma (NPC). Here, we show with nasopharyngeal conditionally reprogrammed cells cultured at the air-liquid interface that pseudostratified epithelial cells are susceptible to EBV infection. Donors varied in susceptibility to de novo EBV infection, but susceptible cultures also displayed differences with respect to pathogenesis. The cultures from one donor yielded lytic infection but cells from two other donors were positive for EBV-encoded EBERs and negative for other lytic infection markers. All cultures stained positive for the pseudostratified markers CK7, MUC5AC, α-tubulin in cilia, and the EBV epithelial cell receptor Ephrin receptor A2. To define EBV transcriptional programs by cell type and to elucidate latent/lytic infection-differential changes, we performed single cell RNA-sequencing on one EBV-infected culture that resulted in alignment with many EBV transcripts. EBV transcripts represented a small portion of the total transcriptome (~0.17%). All cell types in the pseudostratified epithelium had detectable EBV transcripts with suprabasal cells showing the highest number of reads aligning to many EBV genes. Several restriction factors (IRF1, MX1, STAT1, C18orf25) known to limit lytic infection were expressed at lower levels in the lytic subcluster. A third of the differentially-expressed genes in NPC tumors compared to an uninfected pseudostratified ALI culture overlapped with the differentially-expressed genes in the latent subcluster. A third of these commonly perturbed genes were specific to EBV infection and changed in the same direction. Collectively, these findings suggest that the pseudostratified epithelium could harbor EBV infection and that the pseudostratified infection model mirrors many of the transcriptional changes imposed by EBV infection in NPC.


Assuntos
Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/virologia , Interações Hospedeiro-Patógeno/imunologia , Neoplasias Nasofaríngeas/virologia , Carcinoma/metabolismo , Carcinoma/virologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Epitélio/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Humanos , Carcinoma Nasofaríngeo/virologia , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...