Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200630

RESUMO

Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Epigenoma , Leucemia Mieloide Aguda/genética , Adolescente , Criança , Pré-Escolar , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/patologia , Masculino , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1/genética
2.
Methods Mol Biol ; 1878: 173-191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30378076

RESUMO

The characterization of aberrant DNA methylation is emerging as a key part of the study of cancer development and phenotype. The technical advancements and decreasing costs of methods for high-throughput profiling of DNA methylation have brought about a high interest in the use of such methods in disease association studies. Here we discuss the principles for DNA methylation analysis using data from the Infinium DNA methylation BeadChip assays and describe the computational steps and statistical considerations going from processing of the raw array data to analysis of differential methylation. Moreover, we provide detailed guidelines on how to perform tumor subtype classification based on DNA methylation signatures.


Assuntos
Metilação de DNA/genética , Biologia Computacional/métodos , Ilhas de CpG/genética , Bases de Dados de Ácidos Nucleicos , Genoma Humano/genética , Humanos , Neoplasias/genética , Fenótipo
3.
Sci Rep ; 7(1): 6236, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740209

RESUMO

Genome-wide association studies have identified risk loci for SLE, but a large proportion of the genetic contribution to SLE still remains unexplained. To detect novel risk genes, and to predict an individual's SLE risk we designed a random forest classifier using SNP genotype data generated on the "Immunochip" from 1,160 patients with SLE and 2,711 controls. Using gene importance scores defined by the random forest classifier, we identified 15 potential novel risk genes for SLE. Of them 12 are associated with other autoimmune diseases than SLE, whereas three genes (ZNF804A, CDK1, and MANF) have not previously been associated with autoimmunity. Random forest classification also allowed prediction of patients at risk for lupus nephritis with an area under the curve of 0.94. By allele-specific gene expression analysis we detected cis-regulatory SNPs that affect the expression levels of six of the top 40 genes designed by the random forest analysis, indicating a regulatory role for the identified risk variants. The 40 top genes from the prediction were overrepresented for differential expression in B and T cells according to RNA-sequencing of samples from five healthy donors, with more frequent over-expression in B cells compared to T cells.


Assuntos
Autoimunidade/genética , Biomarcadores/análise , Proteína Quinase CDC2/genética , Fatores de Transcrição Kruppel-Like/genética , Lúpus Eritematoso Sistêmico/genética , Fatores de Crescimento Neural/genética , Polimorfismo de Nucleotídeo Único , Adulto , Linfócitos B/imunologia , Linfócitos B/metabolismo , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Masculino , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
Neuroendocrinology ; 105(2): 170-181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27829249

RESUMO

Small intestinal neuroendocrine tumors (SI-NETs) are amine- and peptide-producing neoplasms. Most patients display metastases at the time of diagnosis; they have an unpredictable individual disease course and the tumors are often therapy resistant. Chromogranin A and 5-hydroxyindoleacetic acid are the biomarkers clinically used most often today, but there is a great need for novel diagnostic and prognostic biomarkers and new therapeutic targets. Sixty-nine biomarkers were screened in serum from 23 SI-NET patients and 23 healthy controls using the multiplex proximity ligation assay (PLA). A refined method, the proximity extension assay (PEA), was used to analyze 76 additional biomarkers. Statistical testing and multivariate classification were performed. Immunohistochemistry and ELISA were performed in an extended cohort. Using PLA, 19 biomarkers showed a significant difference in serum concentrations between patients and controls, and PEA revealed a difference in the concentrations of 17 proteins. Multivariate classification analysis revealed decoy receptor 3 (DcR3), trefoil factor 3 (TFF3), and midkine to be good biomarkers for the disease, which was confirmed by ELISA analysis. All 3 biomarkers were expressed in tumor tissue. DcR3 concentrations were elevated in patients with stage IV disease. High concentrations of DcR3 and TFF3 were correlated to poor survival. DcR3, TFF3, and midkine exhibited elevated serum concentrations in SI-NET patients compared to healthy controls, and DcR3 and TFF3 were associated with poor survival. DcR3 seems to be a marker for liver metastases, while TFF3 and midkine may be new diagnostic biomarkers for SI-NETs.


Assuntos
Citocinas/sangue , Neoplasias Intestinais/sangue , Tumores Neuroendócrinos/sangue , Membro 6b de Receptores do Fator de Necrose Tumoral/sangue , Fator Trefoil-3/sangue , Biomarcadores Tumorais/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Midkina , Análise Multivariada , Estadiamento de Neoplasias , Tumores Neuroendócrinos/patologia , Prognóstico , Análise de Sobrevida
5.
Bioinformatics ; 32(7): 1080-2, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26553913

RESUMO

UNLABELLED: The Illumina Infinium HumanMethylation450 BeadChip (450k) is widely used for the evaluation of DNA methylation levels in large-scale datasets, particularly in cancer. The 450k design allows copy number variant (CNV) calling using existing bioinformatics tools. However, in cancer samples, numerous large-scale aberrations cause shifting in the probe intensities and thereby may result in erroneous CNV calling. Therefore, a baseline correction process is needed. We suggest the maximum peak of probe segment density to correct the shift in the intensities in cancer samples. AVAILABILITY AND IMPLEMENTATION: CopyNumber450kCancer is implemented as an R package. The package with examples can be downloaded at http://cran.r-project.org CONTACT: nour.marzouka@medsci.uu.se SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ilhas de CpG , Metilação de DNA , Neoplasias/genética , Software , DNA de Neoplasias , Genoma Humano , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
6.
Clin Epigenetics ; 7: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25729447

RESUMO

BACKGROUND: We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL. RESULTS: We used the methylation status of ~450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations ('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5. CONCLUSIONS: Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.

7.
Genome Biol ; 14(9): r105, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24063430

RESUMO

BACKGROUND: Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood. RESULTS: We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status. CONCLUSIONS: Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment.


Assuntos
Cromatina/metabolismo , Aberrações Cromossômicas , Metilação de DNA , Genoma Humano , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Antineoplásicos/uso terapêutico , Criança , Pré-Escolar , Cromatina/química , Ilhas de CpG , Intervalo Livre de Doença , Elementos Facilitadores Genéticos , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Regiões Promotoras Genéticas , Recidiva , Risco
8.
PLoS One ; 6(9): e25583, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980495

RESUMO

Despite intense interest, methods that provide enhanced sensitivity and specificity in parallel measurements of candidate protein biomarkers in numerous samples have been lacking. We present herein a multiplex proximity ligation assay with readout via realtime PCR or DNA sequencing (ProteinSeq). We demonstrate improved sensitivity over conventional sandwich assays for simultaneous analysis of sets of 35 proteins in 5 µl of blood plasma. Importantly, we observe a minimal tendency to increased background with multiplexing, compared to a sandwich assay, suggesting that higher levels of multiplexing are possible. We used ProteinSeq to analyze proteins in plasma samples from cardiovascular disease (CVD) patient cohorts and matched controls. Three proteins, namely P-selectin, Cystatin-B and Kallikrein-6, were identified as putative diagnostic biomarkers for CVD. The latter two have not been previously reported in the literature and their potential roles must be validated in larger patient cohorts. We conclude that ProteinSeq is promising for screening large numbers of proteins and samples while the technology can provide a much-needed platform for validation of diagnostic markers in biobank samples and in clinical use.


Assuntos
Imunoensaio/métodos , Proteômica/métodos , Análise de Sequência de DNA/métodos , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , Humanos , Imunoensaio/economia , Análise Multivariada , Proteômica/economia , Análise de Sequência de DNA/economia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...