Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 11(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562055

RESUMO

With emerging treatment approaches, it is crucial to correctly diagnose and monitor hereditary and acquired polyneuropathies. This study aimed to assess the validity and accuracy of magnet resonance imaging (MRI)-based muscle volumetry.Using semi-automatic segmentations of upper- and lower leg muscles based on whole-body MRI and axial T1-weighted turbo spin-echo sequences, we compared and correlated muscle volumes, and clinical and neurophysiological parameters in demyelinating Charcot-Marie-Tooth disease (CMT) (n = 13), chronic inflammatory demyelinating polyneuropathy (CIDP) (n = 27), and other neuropathy (n = 17) patients.The muscle volumes of lower legs correlated with foot dorsiflexion strength (p < 0.0001), CMT Neuropathy Score 2 (p < 0.0001), early gait disorders (p = 0.0486), and in CIDP patients with tibial nerve conduction velocities (p = 0.0092). Lower (p = 0.0218) and upper (p = 0.0342) leg muscles were significantly larger in CIDP compared to CMT patients. At one-year follow-up (n = 15), leg muscle volumes showed no significant decrease.MRI muscle volumetry is a promising method to differentiate and characterize neuropathies in clinical practice.

2.
Front Radiol ; 1: 664444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37492182

RESUMO

Deep neural networks recently showed high performance and gained popularity in the field of radiology. However, the fact that large amounts of labeled data are required for training these architectures inhibits practical applications. We take advantage of an unpaired image-to-image translation approach in combination with a novel domain specific loss formulation to create an "easier-to-segment" intermediate image representation without requiring any label data. The requirement here is that the task can be translated from a hard to a related but simplified task for which unlabeled data are available. In the experimental evaluation, we investigate fully automated approaches for segmentation of pathological muscle tissue in T1-weighted magnetic resonance (MR) images of human thighs. The results show clearly improved performance in case of supervised segmentation techniques. Even more impressively, we obtain similar results with a basic completely unsupervised segmentation approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...