Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 15(1): 23, 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36803857

RESUMO

The influence of molecular fragmentation and parameter settings on a mesoscopic dissipative particle dynamics (DPD) simulation of lamellar bilayer formation for a C10E4/water mixture is studied. A "bottom-up" decomposition of C10E4 into the smallest fragment molecules (particles) that satisfy chemical intuition leads to convincing simulation results which agree with experimental findings for bilayer formation and thickness. For integration of the equations of motion Shardlow's S1 scheme proves to be a favorable choice with best overall performance. Increasing the integration time steps above the common setting of 0.04 DPD units leads to increasingly unphysical temperature drifts, but also to increasingly rapid formation of bilayer superstructures without significantly distorted particle distributions up to an integration time step of 0.12. A scaling of the mutual particle-particle repulsions that guide the dynamics has negligible influence within a considerable range of values but exhibits apparent lower thresholds beyond which a simulation fails. Repulsion parameter scaling and molecular particle decomposition show a mutual dependence. For mapping of concentrations to molecule numbers in the simulation box particle volume scaling should be taken into account. A repulsion parameter morphing investigation suggests to not overstretch repulsion parameter accuracy considerations.

2.
J Cheminform ; 15(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593523

RESUMO

Developing and implementing computational algorithms for the extraction of specific substructures from molecular graphs (in silico molecule fragmentation) is an iterative process. It involves repeated sequences of implementing a rule set, applying it to relevant structural data, checking the results, and adjusting the rules. This requires a computational workflow with data import, fragmentation algorithm integration, and result visualisation. The described workflow is normally unavailable for a new algorithm and must be set up individually. This work presents an open Java rich client Graphical User Interface (GUI) application to support the development of new in silico molecule fragmentation algorithms and make them readily available upon release. The MORTAR (MOlecule fRagmenTAtion fRamework) application visualises fragmentation results of a set of molecules in various ways and provides basic analysis features. Fragmentation algorithms can be integrated and developed within MORTAR by using a specific wrapper class. In addition, fragmentation pipelines with any combination of the available fragmentation methods can be executed. Upon release, three fragmentation algorithms are already integrated: ErtlFunctionalGroupsFinder, Sugar Removal Utility, and Scaffold Generator. These algorithms, as well as all cheminformatics functionalities in MORTAR, are implemented based on the Chemistry Development Kit (CDK).

3.
Membranes (Basel) ; 12(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736327

RESUMO

Different charge treatment approaches are examined for cyclotide-induced plasma membrane disruption by lipid extraction studied with dissipative particle dynamics. A pure Coulomb approach with truncated forces tuned to avoid individual strong ion pairing still reveals hidden statistical pairing effects that may lead to artificial membrane stabilization or distortion of cyclotide activity depending on the cyclotide's charge state. While qualitative behavior is not affected in an apparent manner, more sensitive quantitative evaluations can be systematically biased. The findings suggest a charge smearing of point charges by an adequate charge distribution. For large mesoscopic simulation boxes, approximations for the Ewald sum to account for mirror charges due to periodic boundary conditions are of negligible influence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...