Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 12(1): 153-161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32051744

RESUMO

OBJECTIVES: Ex vivo Lung Perfusion (EVLP) is a promising tool to increase the donor pool for lung transplantation. Custodiol-N solution was originally designed for organ preservation during cold static preservation (CSP) and was successfully used for machine perfusion in kidneys. It was the aim of this study to compare the lung functional outcomes after 4 hours of EVLP using modified Custodiol-N or STEEN SolutionTM as perfusion solution. METHODS: In a porcine DCD model, lungs were perfused either with STEEN SolutionTM (Standard SS, n=8) or modified Custodiol-N with added 1.1 g/l glucose monohydrate and 50 g/l dextran 40 (CD, n=8). For a third group 7 g/l albumin was supplemented to modified Custodiol-N (CDA, n=8). During four hours of EVLP pulmonary gas exchange and activities of lactate dehydrogenase (LDH) and alkaline phosphatase (AP) in perfusate were recorded. RESULTS: Lungs that underwent EVLP with modified Custodiol-N showed significantly higher oxygen capacity (ΔpO2 averaged over four hours of EVLP: SS: 236.28 ± 47.26 mmHg, CD: 402.79 ± 30.33 mmHg, CDA: 414.86 ± 9.77 mmHg) than lungs perfused with STEEN SolutionTM. The addition of albumin did not have a significant effect on lung function but these lungs showed lower wet/dry ratio. CONCLUSION: In a porcine DCD model of 9 hours CSP followed by four hours of EVLP the use of modified Custodiol-N as perfusion solution was feasible and associated with higher oxygen capacity than STEEN SolutionTM. The addition of albumin seems to further stabilize lung function.

2.
Int J Artif Organs ; 42(7): 362-369, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31238824

RESUMO

OBJECTIVE: Ex-vivo lung perfusion is a promising tool to evaluate and recondition marginal donor lungs usually after a cold static preservation. The concept of continuous organ perfusion is supposed to reduce ischemic damage; however, the optimal perfusion protocol has not been established yet. The aim of this study was to compare immediate ex-vivo lung perfusion (I-EVLP) to delayed ex-vivo lung perfusion (D-EVLP) after a certain cold static preservation period on lung function in a large animal model. METHODS: In a porcine model, lungs were procured after circulatory death and 60 min of no-touch warm ischemia. Lungs were preserved with single-flush cold low potassium dextran solution and prepared either for I-EVLP (n = 8) or stored cold for 9 h with subsequent D-EVLP (n = 8). Functional outcomes and morphology were compared during 4 h of ex-vivo lung perfusion, using STEEN SolutionTM as perfusion solution. RESULTS: Pulmonary functional data, perfusate activities of lactate dehydrogenase, alkaline phosphatase, and products of lipid peroxidation did not differ significantly. There was a trend toward lower wet-dry ratio (I-EVLP: 13.4 ± 2.9; D-EVLP: 9.1 ± 2.5) and higher ΔpO2 in D-EVLP group (I-EVLP: 209 ± 51.6 mmHg; D-EVLP: 236.3 ± 47.3 mmHg). CONCLUSION: In this donation-after-circulatory-death model, 9 h of cold static preservation followed by ex-vivo lung perfusion results in comparable pulmonary function to I-EVLP as indicated by oxygenation capacities and wet-dry ratio. Our findings indicate that prolonged cold static preservation prior to ex-vivo lung perfusion is as safe and effective as I-EVLP in the procurement of donor lungs.


Assuntos
Circulação Extracorpórea/métodos , Parada Cardíaca/cirurgia , Transplante de Pulmão/métodos , Preservação de Órgãos/métodos , Animais , Modelos Animais de Doenças , Suínos , Fatores de Tempo , Isquemia Quente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...