Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 233(2): e13690, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021706

RESUMO

AIM: The skeletal muscle Cl- channels, the ClC-1 channels, stabilize the resting membrane potential and dampen muscle fibre excitability. This study explored whether ClC-1 inhibition can recover nerve-stimulated force in isolated muscle under conditions of compromised neuromuscular transmission akin to disorders of myasthenia gravis and Lambert-Eaton syndrome. METHODS: Nerve-muscle preparations were isolated from rats. Preparations were exposed to pre-or post-synaptic inhibitors (ω-agatoxin, elevated extracellular Mg2+ , α-bungarotoxin or tubocurarine). The potential of ClC-1 inhibition (9-AC or reduced extracellular Cl- ) to recover nerve-stimulated force under these conditions was assessed. RESULTS: ClC-1 inhibition recovered force in both slow-twitch soleus and fast-twitch EDL muscles exposed to 0.2 µmol/L tubocurarine or 3.5 mmol/L Mg2+ . Similarly, ClC-1 inhibition recovered force in soleus muscles exposed to α-bungarotoxin or ω-agatoxin. Moreover, the concentrations of tubocurarine and Mg2+ required for reducing force to 50% rose from 0.14 ± 0.02 µmol/L and 4.2 ± 0.2 mmol/L in control muscles to 0.45 ± 0.03 µmol/L and 4.7 ± 0.3 mmol/L in muscles with 9-AC respectively (P < .05, paired T test). Inhibition of acetylcholinesterase (neostigmine) and inhibition of voltage-gated K+ channels (4-AP) relieve symptoms in myasthenia gravis and Lambert-Eaton syndrome, respectively. Neostigmine and 9-AC additively increased the tubocurarine concentration required to reduce nerve-stimulated force to 50% (0.56 ± 0.05 µmol/L with 9-AC and neostigmine) and, similarly, 4-AP and 9-AC additively increased the Mg2+ concentration required to reduce nerve-stimulated force to 50% (6.5 ± 0.2 mmol/L with 9-AC and 4-AP). CONCLUSION: This study shows that ClC-1 inhibition can improve neuromuscular function in pharmacological models of compromised neuromuscular transmission.


Assuntos
Acetilcolinesterase , Canais de Cloreto , Animais , Potenciais da Membrana , Junção Neuromuscular , Ratos , Transmissão Sináptica
2.
Physiology (Bethesda) ; 32(6): 425-434, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021362

RESUMO

Initiation and propagation of action potentials in muscle fibers is a key element in the transmission of activating motor input from the central nervous system to their contractile apparatus, and maintenance of excitability is therefore paramount for their endurance during work. Here, we review current knowledge about the acute regulation of ClC-1 channels in active muscles and its importance for muscle excitability, function, and fatigue.


Assuntos
Canais de Cloreto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...