Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19948, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620952

RESUMO

In this article, we report the conception and the use of dialysis-based medical device for the extraction of metals. The medical device is obtained by addition in the dialysate of a functionalized chitosan that can chelate endogenous metals like iron or copper. This water-soluble functionalized chitosan is obtained after controlled reacetylation and grafting of DOTAGA. Due to the high mass of chitosan, the polymer cannot cross through the membrane and the metals are trapped in the dialysate during hemodialysis. Copper extraction has been evaluated in vitro using an hemodialysis protocol. Feasibility study has been performed on healthy sheep showing no acute toxicity througout the entire dialysis procedure and first insights of metallic extraction even on healthy animals.

2.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922073

RESUMO

X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a nanoscintillator and 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenyl porphyrin (P1) as a photosensitizer (AGuIX@Tb-P1). The synthesis was based on the AGuIX@ platform design. AGuIX@Tb-P1 was characterised for its photo-physical and physico-chemical properties. The effect of the nanoparticles was studied using human glioblastoma U-251 MG cells and was compared to treatment with AGuIX@ nanoparticles doped with Gadolinium (Gd) and P1 (AguIX@Gd-P1). We demonstrated that the AGuIX@Tb-P1 design was consistent with X-ray photon energy transfer from Terbium to P1. Both nanoparticles had similar dark cytotoxicity and they were absorbed in a similar rate within the cells. Pre-treated cells exposure to X-rays was related to reactive species production. Using clonogenic assays, establishment of survival curves allowed discrimination of the impact of radiation treatment from X-ray-induced photodynamic effect. We showed that cell growth arrest was increased (35%-increase) when cells were treated with AGuIX@Tb-P1 compared to the nanoparticle doped with Gd.

3.
Nat Commun ; 10(1): 1262, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890717

RESUMO

Lys-27-Met mutations in histone 3 genes (H3K27M) characterize a subgroup of deadly gliomas and decrease genome-wide H3K27 trimethylation. Here we use primary H3K27M tumor lines and isogenic CRISPR-edited controls to assess H3K27M effects in vitro and in vivo. We find that whereas H3K27me3 and H3K27me2 are normally deposited by PRC2 across broad regions, their deposition is severely reduced in H3.3K27M cells. H3K27me3 is unable to spread from large unmethylated CpG islands, while H3K27me2 can be deposited outside these PRC2 high-affinity sites but to levels corresponding to H3K27me3 deposition in wild-type cells. Our findings indicate that PRC2 recruitment and propagation on chromatin are seemingly unaffected by K27M, which mostly impairs spread of the repressive marks it catalyzes, especially H3K27me3. Genome-wide loss of H3K27me3 and me2 deposition has limited transcriptomic consequences, preferentially affecting lowly-expressed genes regulating neurogenesis. Removal of H3K27M restores H3K27me2/me3 spread, impairs cell proliferation, and completely abolishes their capacity to form tumors in mice.


Assuntos
Neoplasias Encefálicas/genética , Cromatina/metabolismo , Glioblastoma/genética , Histonas/genética , Complexo Repressor Polycomb 2/metabolismo , Adolescente , Idoso , Animais , Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética , Feminino , Edição de Genes/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Células HEK293 , Código das Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Masculino , Metionina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Neurogênese/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Genet ; 49(2): 180-185, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28067913

RESUMO

Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs) are deadly and common cancers. Recent genomic studies implicate multiple genetic pathways, including cell signaling, cell cycle and immune evasion, in their development. Here we analyze public data sets and uncover a previously unappreciated role of epigenome deregulation in the genesis of 13% of HPV-negative HNSCCs. Specifically, we identify novel recurrent mutations encoding p.Lys36Met (K36M) alterations in multiple H3 histone genes. histones. We further validate the presence of these alterations in multiple independent HNSCC data sets and show that, along with previously described NSD1 mutations, they correspond to a specific DNA methylation cluster. The K36M substitution and NSD1 defects converge on altering methylation of histone H3 at K36 (H3K36), subsequently blocking cellular differentiation and promoting oncogenesis. Our data further indicate limited redundancy for NSD family members in HPV-negative HNSCCs and suggest a potential role for impaired H3K36 methylation in their development. Further investigation of drugs targeting chromatin regulators is warranted in HPV-negative HNSCCs driven by aberrant H3K36 methylation.


Assuntos
Carcinoma de Células Escamosas/genética , Metilação de DNA/genética , Neoplasias de Cabeça e Pescoço/genética , Histonas/genética , Carcinogênese/genética , Diferenciação Celular/genética , Epigênese Genética/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Proteínas Nucleares/genética , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço
5.
Science ; 352(6287): 844-9, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174990

RESUMO

Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36-to-methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.


Assuntos
Neoplasias Ósseas/genética , Carcinogênese/genética , Condroblastoma/genética , Histonas/genética , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Sarcoma/genética , Animais , Neoplasias Ósseas/patologia , Carcinogênese/patologia , Pré-Escolar , Condroblastoma/patologia , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Lisina/genética , Células-Tronco Mesenquimais/metabolismo , Metionina/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Mutação , Mutação de Sentido Incorreto , Células-Tronco Neoplásicas/metabolismo , Nucleossomos/genética , Complexo Repressor Polycomb 1/metabolismo , Sarcoma/patologia
6.
Nat Commun ; 7: 11185, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048880

RESUMO

Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M--including H3.2K27M--mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.


Assuntos
Neoplasias do Tronco Encefálico/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Histonas/genética , Mutação , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Autopsia , Mapeamento Encefálico , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Cérebro/metabolismo , Cérebro/patologia , Criança , Classe Ia de Fosfatidilinositol 3-Quinase , Evolução Clonal , Glioma/metabolismo , Glioma/patologia , Histonas/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C , Transdução de Sinais , Técnicas Estereotáxicas , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Oncotarget ; 6(31): 31844-56, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26378811

RESUMO

Pilocytic astrocytoma (PA) is the most common brain tumor in children but is rare in adults, and hence poorly studied in this age group. We investigated 222 PA and report increased aneuploidy in older patients. Aneuploid genomes were identified in 45% of adult compared with 17% of pediatric PA. Gains were non-random, favoring chromosomes 5, 7, 6 and 11 in order of frequency, and preferentially affecting non-cerebellar PA and tumors with BRAF V600E mutations and not with KIAA1549-BRAF fusions or FGFR1 mutations. Aneuploid PA differentially expressed genes involved in CNS development, the unfolded protein response, and regulators of genomic stability and the cell cycle (MDM2, PLK2),whose correlated programs were overexpressed specifically in aneuploid PA compared to other glial tumors. Thus, convergence of pathways affecting the cell cycle and genomic stability may favor aneuploidy in PA, possibly representing an additional molecular driver in older patients with this brain tumor.


Assuntos
Aneuploidia , Astrocitoma/classificação , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/classificação , Adulto , Fatores Etários , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Mutação/genética , Estadiamento de Neoplasias , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
8.
Nanomedicine ; 11(3): 657-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645959

RESUMO

Photodynamic therapy (PDT) for brain tumors appears to be complementary to conventional treatments. A number of studies show the major role of the vascular effect in the tumor eradication by PDT. For interstitial PDT (iPDT) of brain tumors guided by real-time imaging, multifunctional nanoparticles consisting of a surface-localized tumor vasculature targeting neuropilin-1 (NRP-1) peptide and encapsulated photosensitizer and magnetic resonance imaging (MRI) contrast agents, have been designed. Nanoplatforms confer photosensitivity to cells and demonstrate a molecular affinity to NRP-1. Intravenous injection into rats bearing intracranial glioma exhibited a dynamic contrast-enhanced MRI for angiogenic endothelial cells lining the neovessels mainly located in the peripheral tumor. By using MRI completed by NRP-1 protein expression of the tumor and brain adjacent to tumor tissues, we checked the selectivity of the nanoparticles. This study represents the first in vivo proof of concept of closed-head iPDT guided by real-time MRI using targeted ultrasmall nanoplatforms. From the clinical editor: The authors constructed tumor vascular peptide targeting multifunctional silica-based nanoparticles, with encapsulated gadolinium oxide as MRI contrast agent and chlorin as a photosensitizer, as a proof of concept novel treatment for glioblastoma in an animal model.


Assuntos
Neoplasias Encefálicas , Glioma , Angiografia por Ressonância Magnética , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neuropilina-1/química , Neuropilina-1/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Radiografia , Ratos , Ratos Nus
9.
Acta Neuropathol ; 128(5): 733-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200321

RESUMO

Studies in pediatric high-grade astrocytomas (HGA) by our group and others have uncovered recurrent somatic mutations affecting highly conserved residues in histone 3 (H3) variants. One of these mutations leads to analogous p.Lys27Met (K27M) mutations in both H3.3 and H3.1 variants, is associated with rapid fatal outcome, and occurs specifically in HGA of the midline in children and young adults. This includes diffuse intrinsic pontine gliomas (80 %) and thalamic or spinal HGA (>90 %), which are surgically challenging locations with often limited tumor material available and critical need for specific histopathological markers. Here, we analyzed formalin-fixed paraffin-embedded tissues from 143 pediatric HGA and 297 other primary brain tumors or normal brain. Immunohistochemical staining for H3K27M was compared to tumor genotype, and also compared to H3 tri-methylated lysine 27 (H3K27me3) staining, previously shown to be drastically decreased in samples carrying this mutation. There was a 100 % concordance between genotype and immunohistochemical analysis of H3K27M in tumor samples. Mutant H3K27M was expressed in the majority of tumor cells, indicating limited intra-tumor heterogeneity for this specific mutation within the limits of our dataset. Both H3.1 and H3.3K27M mutants were recognized by this antibody while non-neoplastic elements, such as endothelial and vascular smooth muscle cells or lymphocytes, did not stain. H3K27me3 immunoreactivity was largely mutually exclusive with H3K27M positivity. These results demonstrate that mutant H3K27M can be specifically identified with high specificity and sensitivity using an H3K27M antibody and immunohistochemistry. Use of this antibody in the clinical setting will prove very useful for diagnosis, especially in the context of small biopsies in challenging midline tumors and will help orient care in the context of the extremely poor prognosis associated with this mutation.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Histonas/genética , Metionina/genética , Mutação/genética , Adolescente , Astrocitoma/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Criança , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Masculino
10.
Nat Genet ; 46(5): 462-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705250

RESUMO

Pediatric midline high-grade astrocytomas (mHGAs) are incurable with few treatment targets identified. Most tumors harbor mutations encoding p.Lys27Met in histone H3 variants. In 40 treatment-naive mHGAs, 39 analyzed by whole-exome sequencing, we find additional somatic mutations specific to tumor location. Gain-of-function mutations in ACVR1 occur in tumors of the pons in conjunction with histone H3.1 p.Lys27Met substitution, whereas FGFR1 mutations or fusions occur in thalamic tumors associated with histone H3.3 p.Lys27Met substitution. Hyperactivation of the bone morphogenetic protein (BMP)-ACVR1 developmental pathway in mHGAs harboring ACVR1 mutations led to increased levels of phosphorylated SMAD1, SMAD5 and SMAD8 and upregulation of BMP downstream early-response genes in tumor cells. Global DNA methylation profiles were significantly associated with the p.Lys27Met alteration, regardless of the mutant histone H3 variant and irrespective of tumor location, supporting the role of this substitution in driving the epigenetic phenotype. This work considerably expands the number of potential treatment targets and further justifies pretreatment biopsy in pediatric mHGA as a means to orient therapeutic efforts in this disease.


Assuntos
Receptores de Ativinas Tipo I/genética , Astrocitoma/genética , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Mutação/genética , Animais , Sequência de Bases , Proteínas Morfogenéticas Ósseas/metabolismo , Criança , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Análise de Sequência de DNA , Proteínas Smad/metabolismo
11.
Cancer Treat Rev ; 40(2): 229-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22858248

RESUMO

The poor outcome of primary malignant brain tumours is predominantly due to local invasion and local recurrence and their prognosis is highly dependent on the degree of resection. They have no border and, at best, a marginal zone that remains invisible to the surgeon. Photodynamic therapy (PDT) appears to be an interesting modality to fill the need for a targeted treatment that may reduce recurrence and extend survival with minimal side effects. In this review, we summarize the different technologies of brain tumour PDT employed such as interstitial PDT, and PDT-associated surgical resection, describing new light delivery devices. The role of dosimetry - one of the key factors behind successful brain tumour PDT - is discussed. This can be achieved by integrating results from in vivo studies. In this context, the development of new therapeutic photosensitizer delivery systems is also an area of significant research interest. Multifunctionality can be engineered into a single nanoplatform to provide tumour-specific detection, treatment, and follow-up. Such multitasking systems appear to be complementary to conventional technologies.


Assuntos
Neoplasias Encefálicas/terapia , Fotoquimioterapia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Braquiterapia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Terapia Combinada , Humanos , Luz , Nanopartículas/uso terapêutico , Recidiva Local de Neoplasia/prevenção & controle , Radiocirurgia , Radioterapia de Intensidade Modulada , Taxa de Sobrevida
12.
Curr Opin Oncol ; 25(6): 665-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24097106

RESUMO

PURPOSE OF REVIEW: Glial tumors of the central nervous system (CNS) are the leading cause of cancer-related death and morbidity in children. Their diagnosis/prognosis relies mainly on clinical and histopathological factors. However, pathological grading is particularly challenging as there is substantial molecular heterogeneity in pediatric CNS tumors, which results in variable biological behavior in tumors with potentially identical histological diagnoses or limited reliable measures of classification for given subgroups. Novel molecular markers/pathways identified by integrated genomic/transcriptomic/epigenomic studies of cohorts of pediatric gliomas are revolutionizing this field and are summarized herein. RECENT FINDINGS: Studies of pediatric gliomas have identified unexpected oncogenic pathways implicated in gliomagenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated-protein-kinase pathway considered to be a hallmark of pilocytic astrocytomas, to alterations in epigenomic modulators in higher-grade tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of gliomas and critical markers for therapy that will help refine pathological grading. SUMMARY: Reappraisal of glioma classification using these novel biomarkers will likely change practice toward molecular pathology and their integration into clinical trials will enable personalized therapies based on the molecular fingerprint of individual tumors.


Assuntos
Astrocitoma/patologia , Biomarcadores Tumorais , Neoplasias do Sistema Nervoso Central/patologia , Terapia Genética , Glioma/patologia , Adolescente , Adulto , Astrocitoma/genética , Astrocitoma/terapia , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Criança , Pré-Escolar , Epigenômica , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/terapia , Humanos , Imuno-Histoquímica , Masculino , Mutação , Prognóstico , Transdução de Sinais
13.
Nanomedicine (Lond) ; 6(6): 995-1009, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21726134

RESUMO

AIM: The strategy developed aims to favor the vascular effect of photodynamic therapy by targeting tumor-associated vascularization using peptide-functionalized nanoparticles. We previously described the conjugation of a photosensitizer to a peptide targeting neuropilin-1 overexpressed in tumor angiogenic vessels. MATERIALS & METHODS: In this study, we have designed and photophysically characterized a multifunctional nanoparticle consisting of a surface-localized tumor vasculature targeting peptides and encapsulated photodynamic therapy and imaging agents. RESULTS & CONCLUSION: The elaboration of these multifunctional silica-based nanoparticles is reported. Nanoparticles functionalized with approximately 4.2 peptides bound to recombinant neuropilin-1 protein. Nanoparticles conferred photosensitivity to cells overexpressing neuropilin-1, providing evidence that the chlorin grafted within the nanoparticle matrix can be photoactivated to yield photocytotoxic effects in vitro.


Assuntos
Nanopartículas/química , Fotoquimioterapia/métodos , Dióxido de Silício/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Neuropilina-1/química , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Proteínas Recombinantes/química
14.
Bioorg Med Chem ; 18(9): 3285-98, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20363638

RESUMO

Neuropilin-1 (NRP-1) is a co-receptor of VEGFR(165) and molecules interfering with VEGF(165) binding to NRP-1 seem to be promising candidates as new angiogenesis modulators. Based on the minimal four amino acid sequence of peptidic ligands known to bind NRP-1, we describe here the design, synthesis and biological evaluation of series of original sugar-based peptidomimetics using a C-glycosyl compound, derived from d-gulonolactone, as a scaffold, which was functionalized with side chains of the amino-acids arginine, and tryptophane or threonine. At 100 microM, all compounds exhibited a weak affinity for NRP-1, the most efficient being the bis-guanidinylated compound 32 (IC(50)=92 microM) which could be considered as a new NRP-1 non-peptidic ligand.


Assuntos
Moduladores da Angiogênese , Biomimética , Neuropilina-1 , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Moduladores da Angiogênese/síntese química , Moduladores da Angiogênese/química , Moduladores da Angiogênese/farmacologia , Animais , Carboidratos/síntese química , Carboidratos/química , Carboidratos/farmacologia , Humanos , Concentração Inibidora 50 , Ligantes , Estrutura Molecular , Neuropilina-1/química , Neuropilina-1/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Pharm Res ; 27(3): 468-79, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20087632

RESUMO

PURPOSE: This article characterizes the vascular effects following vascular-targeted photodynamic therapy with a photosensitizer which actively targets endothelial cells. METHODS: This strategy was considered by coupling a chlorin to a heptapeptide targeting neuropilin-1 in human malignant glioma-bearing nude mice. A laser Doppler microvascular perfusion monitor was used to monitor microvascular blood perfusion in tumor tissue. Endothelial cells' ultra structural integrity was observed by transmission electron microscopy. The consequences of photosensitization on tumor vessels, tissue factor expression, fibrinogen consumption, and thrombogenic effects were studied by immunohistochemical staining. RESULTS: Treatment of glioma-bearing mice with the conjugate showed a statistically significant tumor growth delay. Vascular effect was characterized by a decrease in tumor tissue blood flow at about 50% baseline during treatment not related to variations in temperature. This vascular shutdown was mediated by tumor blood vessels' congestion. A pro-thrombotic behavior of targeted endothelial cells in the absence of ultra structural changes led to the induction of tissue factor expression from the earliest times post-treatment. Expression of tissue factor-initiated thrombi formation was also related to an increase in fibrinogen consumption. CONCLUSION: Using a peptide-conjugated photosensitizer targeting neuropilin-1, induction of tissue factor expression immediately post-treatment, led to the establishment of thrombogenic effects within the vessel lumen.


Assuntos
Glioma/tratamento farmacológico , Neuropilina-1/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Tromboplastina/metabolismo , Trombose/induzido quimicamente , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/uso terapêutico
16.
Int J Radiat Oncol Biol Phys ; 75(1): 244-52, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19604651

RESUMO

PURPOSE: Photodynamic therapy (PDT) is based on the interaction of a photosensitizing (PS) agent, light, and oxygen. Few new PS agents are being developed to the in vivo stage, partly because of the difficulty in finding the right treatment conditions. Response surface methodology, an empirical modeling approach based on data resulting from a set of designed experiments, was suggested as a rational solution with which to select in vivo PDT conditions by using a new peptide-conjugated PS targeting agent, neuropilin-1. METHODS AND MATERIALS: A Doehlert experimental design was selected to model effects and interactions of the PS dose, fluence, and fluence rate on the growth of U87 human malignant glioma cell xenografts in nude mice, using a fixed drug-light interval. All experimental results were computed by Nemrod-W software and Matlab. RESULTS: Intrinsic diameter growth rate, a tumor growth parameter independent of the initial volume of the tumor, was selected as the response variable and was compared to tumor growth delay and relative tumor volumes. With only 13 experimental conditions tested, an optimal PDT condition was selected (PS agent dose, 2.80 mg/kg; fluence, 120 J/cm(2); fluence rate, 85 mW/cm(2)). Treatment of glioma-bearing mice with the peptide-conjugated PS agent, followed by the optimized PDT condition showed a statistically significant improvement in delaying tumor growth compared with animals who received the PDT with the nonconjugated PS agent. CONCLUSIONS: Response surface methodology appears to be a useful experimental approach for rapid testing of different treatment conditions and determination of optimal values of PDT factors for any PS agent.


Assuntos
Modelos Estatísticos , Neuropilina-1 , Oligopeptídeos/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Algoritmos , Animais , Linhagem Celular Tumoral , Feminino , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacocinética , Fatores de Tempo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
J Photochem Photobiol B ; 96(2): 101-8, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19464192

RESUMO

The strategy developed aims to favor the vascular effect of photodynamic therapy (PDT) by targeting tumor vasculature. This approach is considered by coupling a photosensitizer (PS) to an heptapeptide targeting neuropilin-1 (NRP-1). We previously demonstrated that this new conjugated PS, which binds to recombinant NRP-1 protein, was a much more potent PS compared to the non-conjugated PS in human umbilical vein endothelial cells (HUVEC) expressing NRP-1, due to the coupling of the peptide moiety. To argue the involvement of NRP-1 in the conjugated PS cellular uptake, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor, and we evidenced a significant decrease of the conjugated PS uptake after RNA interference-mediated silencing of NRP-1. In mice xenografted ectopically with U87 human malignant glioma cells, we demonstrated that only the conjugated PS allowed a selective accumulation in endothelial cells lining tumor vessels. Vascular endothelial growth factor (VEGF) plasma and tumor levels could not prevent the recognition of the conjugate by NRP-1. The vascular effect induced by the conjugated PS, was characterized by a reduction in tumor blood flow around 50% during PDT. In vivo, the photodynamic efficiency with the conjugated PS induced a statistically significant tumor growth delay compared to the non-coupled PS. The peptide-conjugated chlorin-type PS uptake involves NRP-1 and this targeting strategy favors the vascular effect of PDT in vivo.


Assuntos
Neuropilina-1/metabolismo , Peptídeos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Camundongos , Neuropilina-1/genética , Peptídeos/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Porfirinas/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Trends Biotechnol ; 26(11): 612-21, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18804298

RESUMO

Photodynamic therapy (PDT) in cancer treatment involves the uptake of a photosensitizer by cancer tissue followed by photoirradiation. The use of nanoparticles as carriers of photosensitizers is a very promising approach because these nanomaterials can satisfy all the requirements for an ideal PDT agent. This review describes and compares the different individual types of nanoparticles that are currently in use for PDT applications. Recent advances in the use of nanoparticles, including inorganic oxide-, metallic-, ceramic-, and biodegradable polymer-based nanomaterials as carriers of photosensitizing agents, are highlighted. We describe the nanoparticles in terms of stability, photocytotoxic efficiency, biodistribution and therapeutic efficiency. Finally, we summarize exciting new results concerning the improvement of the photophysical properties of nanoparticles by means of biphotonic absorption and upconversion.


Assuntos
Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Biodegradação Ambiental , Biotecnologia , Humanos , Neoplasias/tratamento farmacológico , Veículos Farmacêuticos/química , Veículos Farmacêuticos/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...